972 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			972 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| 
								 | 
							
								/*
							 | 
						||
| 
								 | 
							
								** $Id: ltable.c $
							 | 
						||
| 
								 | 
							
								** Lua tables (hash)
							 | 
						||
| 
								 | 
							
								** See Copyright Notice in lua.h
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#define ltable_c
							 | 
						||
| 
								 | 
							
								#define LUA_CORE
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#include "lprefix.h"
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/*
							 | 
						||
| 
								 | 
							
								** Implementation of tables (aka arrays, objects, or hash tables).
							 | 
						||
| 
								 | 
							
								** Tables keep its elements in two parts: an array part and a hash part.
							 | 
						||
| 
								 | 
							
								** Non-negative integer keys are all candidates to be kept in the array
							 | 
						||
| 
								 | 
							
								** part. The actual size of the array is the largest 'n' such that
							 | 
						||
| 
								 | 
							
								** more than half the slots between 1 and n are in use.
							 | 
						||
| 
								 | 
							
								** Hash uses a mix of chained scatter table with Brent's variation.
							 | 
						||
| 
								 | 
							
								** A main invariant of these tables is that, if an element is not
							 | 
						||
| 
								 | 
							
								** in its main position (i.e. the 'original' position that its hash gives
							 | 
						||
| 
								 | 
							
								** to it), then the colliding element is in its own main position.
							 | 
						||
| 
								 | 
							
								** Hence even when the load factor reaches 100%, performance remains good.
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#include <math.h>
							 | 
						||
| 
								 | 
							
								#include <limits.h>
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#include "lua.h"
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#include "ldebug.h"
							 | 
						||
| 
								 | 
							
								#include "ldo.h"
							 | 
						||
| 
								 | 
							
								#include "lgc.h"
							 | 
						||
| 
								 | 
							
								#include "lmem.h"
							 | 
						||
| 
								 | 
							
								#include "lobject.h"
							 | 
						||
| 
								 | 
							
								#include "lstate.h"
							 | 
						||
| 
								 | 
							
								#include "lstring.h"
							 | 
						||
| 
								 | 
							
								#include "ltable.h"
							 | 
						||
| 
								 | 
							
								#include "lvm.h"
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/*
							 | 
						||
| 
								 | 
							
								** MAXABITS is the largest integer such that MAXASIZE fits in an
							 | 
						||
| 
								 | 
							
								** unsigned int.
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								#define MAXABITS	cast_int(sizeof(int) * CHAR_BIT - 1)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/*
							 | 
						||
| 
								 | 
							
								** MAXASIZE is the maximum size of the array part. It is the minimum
							 | 
						||
| 
								 | 
							
								** between 2^MAXABITS and the maximum size that, measured in bytes,
							 | 
						||
| 
								 | 
							
								** fits in a 'size_t'.
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								#define MAXASIZE	luaM_limitN(1u << MAXABITS, TValue)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/*
							 | 
						||
| 
								 | 
							
								** MAXHBITS is the largest integer such that 2^MAXHBITS fits in a
							 | 
						||
| 
								 | 
							
								** signed int.
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								#define MAXHBITS	(MAXABITS - 1)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/*
							 | 
						||
| 
								 | 
							
								** MAXHSIZE is the maximum size of the hash part. It is the minimum
							 | 
						||
| 
								 | 
							
								** between 2^MAXHBITS and the maximum size such that, measured in bytes,
							 | 
						||
| 
								 | 
							
								** it fits in a 'size_t'.
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								#define MAXHSIZE	luaM_limitN(1u << MAXHBITS, Node)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/*
							 | 
						||
| 
								 | 
							
								** When the original hash value is good, hashing by a power of 2
							 | 
						||
| 
								 | 
							
								** avoids the cost of '%'.
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								#define hashpow2(t,n)		(gnode(t, lmod((n), sizenode(t))))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/*
							 | 
						||
| 
								 | 
							
								** for other types, it is better to avoid modulo by power of 2, as
							 | 
						||
| 
								 | 
							
								** they can have many 2 factors.
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								#define hashmod(t,n)	(gnode(t, ((n) % ((sizenode(t)-1)|1))))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#define hashstr(t,str)		hashpow2(t, (str)->hash)
							 | 
						||
| 
								 | 
							
								#define hashboolean(t,p)	hashpow2(t, p)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#define hashint(t,i)		hashpow2(t, i)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#define hashpointer(t,p)	hashmod(t, point2uint(p))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#define dummynode		(&dummynode_)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static const Node dummynode_ = {
							 | 
						||
| 
								 | 
							
								  {{NULL}, LUA_VEMPTY,  /* value's value and type */
							 | 
						||
| 
								 | 
							
								   LUA_VNIL, 0, {NULL}}  /* key type, next, and key value */
							 | 
						||
| 
								 | 
							
								};
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static const TValue absentkey = {ABSTKEYCONSTANT};
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/*
							 | 
						||
| 
								 | 
							
								** Hash for floating-point numbers.
							 | 
						||
| 
								 | 
							
								** The main computation should be just
							 | 
						||
| 
								 | 
							
								**     n = frexp(n, &i); return (n * INT_MAX) + i
							 | 
						||
| 
								 | 
							
								** but there are some numerical subtleties.
							 | 
						||
| 
								 | 
							
								** In a two-complement representation, INT_MAX does not has an exact
							 | 
						||
| 
								 | 
							
								** representation as a float, but INT_MIN does; because the absolute
							 | 
						||
| 
								 | 
							
								** value of 'frexp' is smaller than 1 (unless 'n' is inf/NaN), the
							 | 
						||
| 
								 | 
							
								** absolute value of the product 'frexp * -INT_MIN' is smaller or equal
							 | 
						||
| 
								 | 
							
								** to INT_MAX. Next, the use of 'unsigned int' avoids overflows when
							 | 
						||
| 
								 | 
							
								** adding 'i'; the use of '~u' (instead of '-u') avoids problems with
							 | 
						||
| 
								 | 
							
								** INT_MIN.
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								#if !defined(l_hashfloat)
							 | 
						||
| 
								 | 
							
								static int l_hashfloat (lua_Number n) {
							 | 
						||
| 
								 | 
							
								  int i;
							 | 
						||
| 
								 | 
							
								  lua_Integer ni;
							 | 
						||
| 
								 | 
							
								  n = l_mathop(frexp)(n, &i) * -cast_num(INT_MIN);
							 | 
						||
| 
								 | 
							
								  if (!lua_numbertointeger(n, &ni)) {  /* is 'n' inf/-inf/NaN? */
							 | 
						||
| 
								 | 
							
								    lua_assert(luai_numisnan(n) || l_mathop(fabs)(n) == cast_num(HUGE_VAL));
							 | 
						||
| 
								 | 
							
								    return 0;
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								  else {  /* normal case */
							 | 
						||
| 
								 | 
							
								    unsigned int u = cast_uint(i) + cast_uint(ni);
							 | 
						||
| 
								 | 
							
								    return cast_int(u <= cast_uint(INT_MAX) ? u : ~u);
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								#endif
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/*
							 | 
						||
| 
								 | 
							
								** returns the 'main' position of an element in a table (that is,
							 | 
						||
| 
								 | 
							
								** the index of its hash value). The key comes broken (tag in 'ktt'
							 | 
						||
| 
								 | 
							
								** and value in 'vkl') so that we can call it on keys inserted into
							 | 
						||
| 
								 | 
							
								** nodes.
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								static Node *mainposition (const Table *t, int ktt, const Value *kvl) {
							 | 
						||
| 
								 | 
							
								  switch (withvariant(ktt)) {
							 | 
						||
| 
								 | 
							
								    case LUA_VNUMINT: {
							 | 
						||
| 
								 | 
							
								      lua_Integer key = ivalueraw(*kvl);
							 | 
						||
| 
								 | 
							
								      return hashint(t, key);
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								    case LUA_VNUMFLT: {
							 | 
						||
| 
								 | 
							
								      lua_Number n = fltvalueraw(*kvl);
							 | 
						||
| 
								 | 
							
								      return hashmod(t, l_hashfloat(n));
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								    case LUA_VSHRSTR: {
							 | 
						||
| 
								 | 
							
								      TString *ts = tsvalueraw(*kvl);
							 | 
						||
| 
								 | 
							
								      return hashstr(t, ts);
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								    case LUA_VLNGSTR: {
							 | 
						||
| 
								 | 
							
								      TString *ts = tsvalueraw(*kvl);
							 | 
						||
| 
								 | 
							
								      return hashpow2(t, luaS_hashlongstr(ts));
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								    case LUA_VFALSE:
							 | 
						||
| 
								 | 
							
								      return hashboolean(t, 0);
							 | 
						||
| 
								 | 
							
								    case LUA_VTRUE:
							 | 
						||
| 
								 | 
							
								      return hashboolean(t, 1);
							 | 
						||
| 
								 | 
							
								    case LUA_VLIGHTUSERDATA: {
							 | 
						||
| 
								 | 
							
								      void *p = pvalueraw(*kvl);
							 | 
						||
| 
								 | 
							
								      return hashpointer(t, p);
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								    case LUA_VLCF: {
							 | 
						||
| 
								 | 
							
								      lua_CFunction f = fvalueraw(*kvl);
							 | 
						||
| 
								 | 
							
								      return hashpointer(t, f);
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								    default: {
							 | 
						||
| 
								 | 
							
								      GCObject *o = gcvalueraw(*kvl);
							 | 
						||
| 
								 | 
							
								      return hashpointer(t, o);
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/*
							 | 
						||
| 
								 | 
							
								** Returns the main position of an element given as a 'TValue'
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								static Node *mainpositionTV (const Table *t, const TValue *key) {
							 | 
						||
| 
								 | 
							
								  return mainposition(t, rawtt(key), valraw(key));
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/*
							 | 
						||
| 
								 | 
							
								** Check whether key 'k1' is equal to the key in node 'n2'. This
							 | 
						||
| 
								 | 
							
								** equality is raw, so there are no metamethods. Floats with integer
							 | 
						||
| 
								 | 
							
								** values have been normalized, so integers cannot be equal to
							 | 
						||
| 
								 | 
							
								** floats. It is assumed that 'eqshrstr' is simply pointer equality, so
							 | 
						||
| 
								 | 
							
								** that short strings are handled in the default case.
							 | 
						||
| 
								 | 
							
								** A true 'deadok' means to accept dead keys as equal to their original
							 | 
						||
| 
								 | 
							
								** values. All dead keys are compared in the default case, by pointer
							 | 
						||
| 
								 | 
							
								** identity. (Only collectable objects can produce dead keys.) Note that
							 | 
						||
| 
								 | 
							
								** dead long strings are also compared by identity.
							 | 
						||
| 
								 | 
							
								** Once a key is dead, its corresponding value may be collected, and
							 | 
						||
| 
								 | 
							
								** then another value can be created with the same address. If this
							 | 
						||
| 
								 | 
							
								** other value is given to 'next', 'equalkey' will signal a false
							 | 
						||
| 
								 | 
							
								** positive. In a regular traversal, this situation should never happen,
							 | 
						||
| 
								 | 
							
								** as all keys given to 'next' came from the table itself, and therefore
							 | 
						||
| 
								 | 
							
								** could not have been collected. Outside a regular traversal, we
							 | 
						||
| 
								 | 
							
								** have garbage in, garbage out. What is relevant is that this false
							 | 
						||
| 
								 | 
							
								** positive does not break anything.  (In particular, 'next' will return
							 | 
						||
| 
								 | 
							
								** some other valid item on the table or nil.)
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								static int equalkey (const TValue *k1, const Node *n2, int deadok) {
							 | 
						||
| 
								 | 
							
								  if ((rawtt(k1) != keytt(n2)) &&  /* not the same variants? */
							 | 
						||
| 
								 | 
							
								       !(deadok && keyisdead(n2) && iscollectable(k1)))
							 | 
						||
| 
								 | 
							
								   return 0;  /* cannot be same key */
							 | 
						||
| 
								 | 
							
								  switch (keytt(n2)) {
							 | 
						||
| 
								 | 
							
								    case LUA_VNIL: case LUA_VFALSE: case LUA_VTRUE:
							 | 
						||
| 
								 | 
							
								      return 1;
							 | 
						||
| 
								 | 
							
								    case LUA_VNUMINT:
							 | 
						||
| 
								 | 
							
								      return (ivalue(k1) == keyival(n2));
							 | 
						||
| 
								 | 
							
								    case LUA_VNUMFLT:
							 | 
						||
| 
								 | 
							
								      return luai_numeq(fltvalue(k1), fltvalueraw(keyval(n2)));
							 | 
						||
| 
								 | 
							
								    case LUA_VLIGHTUSERDATA:
							 | 
						||
| 
								 | 
							
								      return pvalue(k1) == pvalueraw(keyval(n2));
							 | 
						||
| 
								 | 
							
								    case LUA_VLCF:
							 | 
						||
| 
								 | 
							
								      return fvalue(k1) == fvalueraw(keyval(n2));
							 | 
						||
| 
								 | 
							
								    case ctb(LUA_VLNGSTR):
							 | 
						||
| 
								 | 
							
								      return luaS_eqlngstr(tsvalue(k1), keystrval(n2));
							 | 
						||
| 
								 | 
							
								    default:
							 | 
						||
| 
								 | 
							
								      return gcvalue(k1) == gcvalueraw(keyval(n2));
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/*
							 | 
						||
| 
								 | 
							
								** True if value of 'alimit' is equal to the real size of the array
							 | 
						||
| 
								 | 
							
								** part of table 't'. (Otherwise, the array part must be larger than
							 | 
						||
| 
								 | 
							
								** 'alimit'.)
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								#define limitequalsasize(t)	(isrealasize(t) || ispow2((t)->alimit))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/*
							 | 
						||
| 
								 | 
							
								** Returns the real size of the 'array' array
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								LUAI_FUNC unsigned int luaH_realasize (const Table *t) {
							 | 
						||
| 
								 | 
							
								  if (limitequalsasize(t))
							 | 
						||
| 
								 | 
							
								    return t->alimit;  /* this is the size */
							 | 
						||
| 
								 | 
							
								  else {
							 | 
						||
| 
								 | 
							
								    unsigned int size = t->alimit;
							 | 
						||
| 
								 | 
							
								    /* compute the smallest power of 2 not smaller than 'n' */
							 | 
						||
| 
								 | 
							
								    size |= (size >> 1);
							 | 
						||
| 
								 | 
							
								    size |= (size >> 2);
							 | 
						||
| 
								 | 
							
								    size |= (size >> 4);
							 | 
						||
| 
								 | 
							
								    size |= (size >> 8);
							 | 
						||
| 
								 | 
							
								    size |= (size >> 16);
							 | 
						||
| 
								 | 
							
								#if (UINT_MAX >> 30) > 3
							 | 
						||
| 
								 | 
							
								    size |= (size >> 32);  /* unsigned int has more than 32 bits */
							 | 
						||
| 
								 | 
							
								#endif
							 | 
						||
| 
								 | 
							
								    size++;
							 | 
						||
| 
								 | 
							
								    lua_assert(ispow2(size) && size/2 < t->alimit && t->alimit < size);
							 | 
						||
| 
								 | 
							
								    return size;
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/*
							 | 
						||
| 
								 | 
							
								** Check whether real size of the array is a power of 2.
							 | 
						||
| 
								 | 
							
								** (If it is not, 'alimit' cannot be changed to any other value
							 | 
						||
| 
								 | 
							
								** without changing the real size.)
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								static int ispow2realasize (const Table *t) {
							 | 
						||
| 
								 | 
							
								  return (!isrealasize(t) || ispow2(t->alimit));
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static unsigned int setlimittosize (Table *t) {
							 | 
						||
| 
								 | 
							
								  t->alimit = luaH_realasize(t);
							 | 
						||
| 
								 | 
							
								  setrealasize(t);
							 | 
						||
| 
								 | 
							
								  return t->alimit;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#define limitasasize(t)	check_exp(isrealasize(t), t->alimit)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/*
							 | 
						||
| 
								 | 
							
								** "Generic" get version. (Not that generic: not valid for integers,
							 | 
						||
| 
								 | 
							
								** which may be in array part, nor for floats with integral values.)
							 | 
						||
| 
								 | 
							
								** See explanation about 'deadok' in function 'equalkey'.
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								static const TValue *getgeneric (Table *t, const TValue *key, int deadok) {
							 | 
						||
| 
								 | 
							
								  Node *n = mainpositionTV(t, key);
							 | 
						||
| 
								 | 
							
								  for (;;) {  /* check whether 'key' is somewhere in the chain */
							 | 
						||
| 
								 | 
							
								    if (equalkey(key, n, deadok))
							 | 
						||
| 
								 | 
							
								      return gval(n);  /* that's it */
							 | 
						||
| 
								 | 
							
								    else {
							 | 
						||
| 
								 | 
							
								      int nx = gnext(n);
							 | 
						||
| 
								 | 
							
								      if (nx == 0)
							 | 
						||
| 
								 | 
							
								        return &absentkey;  /* not found */
							 | 
						||
| 
								 | 
							
								      n += nx;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/*
							 | 
						||
| 
								 | 
							
								** returns the index for 'k' if 'k' is an appropriate key to live in
							 | 
						||
| 
								 | 
							
								** the array part of a table, 0 otherwise.
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								static unsigned int arrayindex (lua_Integer k) {
							 | 
						||
| 
								 | 
							
								  if (l_castS2U(k) - 1u < MAXASIZE)  /* 'k' in [1, MAXASIZE]? */
							 | 
						||
| 
								 | 
							
								    return cast_uint(k);  /* 'key' is an appropriate array index */
							 | 
						||
| 
								 | 
							
								  else
							 | 
						||
| 
								 | 
							
								    return 0;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/*
							 | 
						||
| 
								 | 
							
								** returns the index of a 'key' for table traversals. First goes all
							 | 
						||
| 
								 | 
							
								** elements in the array part, then elements in the hash part. The
							 | 
						||
| 
								 | 
							
								** beginning of a traversal is signaled by 0.
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								static unsigned int findindex (lua_State *L, Table *t, TValue *key,
							 | 
						||
| 
								 | 
							
								                               unsigned int asize) {
							 | 
						||
| 
								 | 
							
								  unsigned int i;
							 | 
						||
| 
								 | 
							
								  if (ttisnil(key)) return 0;  /* first iteration */
							 | 
						||
| 
								 | 
							
								  i = ttisinteger(key) ? arrayindex(ivalue(key)) : 0;
							 | 
						||
| 
								 | 
							
								  if (i - 1u < asize)  /* is 'key' inside array part? */
							 | 
						||
| 
								 | 
							
								    return i;  /* yes; that's the index */
							 | 
						||
| 
								 | 
							
								  else {
							 | 
						||
| 
								 | 
							
								    const TValue *n = getgeneric(t, key, 1);
							 | 
						||
| 
								 | 
							
								    if (l_unlikely(isabstkey(n)))
							 | 
						||
| 
								 | 
							
								      luaG_runerror(L, "invalid key to 'next'");  /* key not found */
							 | 
						||
| 
								 | 
							
								    i = cast_int(nodefromval(n) - gnode(t, 0));  /* key index in hash table */
							 | 
						||
| 
								 | 
							
								    /* hash elements are numbered after array ones */
							 | 
						||
| 
								 | 
							
								    return (i + 1) + asize;
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								int luaH_next (lua_State *L, Table *t, StkId key) {
							 | 
						||
| 
								 | 
							
								  unsigned int asize = luaH_realasize(t);
							 | 
						||
| 
								 | 
							
								  unsigned int i = findindex(L, t, s2v(key), asize);  /* find original key */
							 | 
						||
| 
								 | 
							
								  for (; i < asize; i++) {  /* try first array part */
							 | 
						||
| 
								 | 
							
								    if (!isempty(&t->array[i])) {  /* a non-empty entry? */
							 | 
						||
| 
								 | 
							
								      setivalue(s2v(key), i + 1);
							 | 
						||
| 
								 | 
							
								      setobj2s(L, key + 1, &t->array[i]);
							 | 
						||
| 
								 | 
							
								      return 1;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								  for (i -= asize; cast_int(i) < sizenode(t); i++) {  /* hash part */
							 | 
						||
| 
								 | 
							
								    if (!isempty(gval(gnode(t, i)))) {  /* a non-empty entry? */
							 | 
						||
| 
								 | 
							
								      Node *n = gnode(t, i);
							 | 
						||
| 
								 | 
							
								      getnodekey(L, s2v(key), n);
							 | 
						||
| 
								 | 
							
								      setobj2s(L, key + 1, gval(n));
							 | 
						||
| 
								 | 
							
								      return 1;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								  return 0;  /* no more elements */
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static void freehash (lua_State *L, Table *t) {
							 | 
						||
| 
								 | 
							
								  if (!isdummy(t))
							 | 
						||
| 
								 | 
							
								    luaM_freearray(L, t->node, cast_sizet(sizenode(t)));
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/*
							 | 
						||
| 
								 | 
							
								** {=============================================================
							 | 
						||
| 
								 | 
							
								** Rehash
							 | 
						||
| 
								 | 
							
								** ==============================================================
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/*
							 | 
						||
| 
								 | 
							
								** Compute the optimal size for the array part of table 't'. 'nums' is a
							 | 
						||
| 
								 | 
							
								** "count array" where 'nums[i]' is the number of integers in the table
							 | 
						||
| 
								 | 
							
								** between 2^(i - 1) + 1 and 2^i. 'pna' enters with the total number of
							 | 
						||
| 
								 | 
							
								** integer keys in the table and leaves with the number of keys that
							 | 
						||
| 
								 | 
							
								** will go to the array part; return the optimal size.  (The condition
							 | 
						||
| 
								 | 
							
								** 'twotoi > 0' in the for loop stops the loop if 'twotoi' overflows.)
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								static unsigned int computesizes (unsigned int nums[], unsigned int *pna) {
							 | 
						||
| 
								 | 
							
								  int i;
							 | 
						||
| 
								 | 
							
								  unsigned int twotoi;  /* 2^i (candidate for optimal size) */
							 | 
						||
| 
								 | 
							
								  unsigned int a = 0;  /* number of elements smaller than 2^i */
							 | 
						||
| 
								 | 
							
								  unsigned int na = 0;  /* number of elements to go to array part */
							 | 
						||
| 
								 | 
							
								  unsigned int optimal = 0;  /* optimal size for array part */
							 | 
						||
| 
								 | 
							
								  /* loop while keys can fill more than half of total size */
							 | 
						||
| 
								 | 
							
								  for (i = 0, twotoi = 1;
							 | 
						||
| 
								 | 
							
								       twotoi > 0 && *pna > twotoi / 2;
							 | 
						||
| 
								 | 
							
								       i++, twotoi *= 2) {
							 | 
						||
| 
								 | 
							
								    a += nums[i];
							 | 
						||
| 
								 | 
							
								    if (a > twotoi/2) {  /* more than half elements present? */
							 | 
						||
| 
								 | 
							
								      optimal = twotoi;  /* optimal size (till now) */
							 | 
						||
| 
								 | 
							
								      na = a;  /* all elements up to 'optimal' will go to array part */
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								  lua_assert((optimal == 0 || optimal / 2 < na) && na <= optimal);
							 | 
						||
| 
								 | 
							
								  *pna = na;
							 | 
						||
| 
								 | 
							
								  return optimal;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static int countint (lua_Integer key, unsigned int *nums) {
							 | 
						||
| 
								 | 
							
								  unsigned int k = arrayindex(key);
							 | 
						||
| 
								 | 
							
								  if (k != 0) {  /* is 'key' an appropriate array index? */
							 | 
						||
| 
								 | 
							
								    nums[luaO_ceillog2(k)]++;  /* count as such */
							 | 
						||
| 
								 | 
							
								    return 1;
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								  else
							 | 
						||
| 
								 | 
							
								    return 0;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/*
							 | 
						||
| 
								 | 
							
								** Count keys in array part of table 't': Fill 'nums[i]' with
							 | 
						||
| 
								 | 
							
								** number of keys that will go into corresponding slice and return
							 | 
						||
| 
								 | 
							
								** total number of non-nil keys.
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								static unsigned int numusearray (const Table *t, unsigned int *nums) {
							 | 
						||
| 
								 | 
							
								  int lg;
							 | 
						||
| 
								 | 
							
								  unsigned int ttlg;  /* 2^lg */
							 | 
						||
| 
								 | 
							
								  unsigned int ause = 0;  /* summation of 'nums' */
							 | 
						||
| 
								 | 
							
								  unsigned int i = 1;  /* count to traverse all array keys */
							 | 
						||
| 
								 | 
							
								  unsigned int asize = limitasasize(t);  /* real array size */
							 | 
						||
| 
								 | 
							
								  /* traverse each slice */
							 | 
						||
| 
								 | 
							
								  for (lg = 0, ttlg = 1; lg <= MAXABITS; lg++, ttlg *= 2) {
							 | 
						||
| 
								 | 
							
								    unsigned int lc = 0;  /* counter */
							 | 
						||
| 
								 | 
							
								    unsigned int lim = ttlg;
							 | 
						||
| 
								 | 
							
								    if (lim > asize) {
							 | 
						||
| 
								 | 
							
								      lim = asize;  /* adjust upper limit */
							 | 
						||
| 
								 | 
							
								      if (i > lim)
							 | 
						||
| 
								 | 
							
								        break;  /* no more elements to count */
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								    /* count elements in range (2^(lg - 1), 2^lg] */
							 | 
						||
| 
								 | 
							
								    for (; i <= lim; i++) {
							 | 
						||
| 
								 | 
							
								      if (!isempty(&t->array[i-1]))
							 | 
						||
| 
								 | 
							
								        lc++;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								    nums[lg] += lc;
							 | 
						||
| 
								 | 
							
								    ause += lc;
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								  return ause;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static int numusehash (const Table *t, unsigned int *nums, unsigned int *pna) {
							 | 
						||
| 
								 | 
							
								  int totaluse = 0;  /* total number of elements */
							 | 
						||
| 
								 | 
							
								  int ause = 0;  /* elements added to 'nums' (can go to array part) */
							 | 
						||
| 
								 | 
							
								  int i = sizenode(t);
							 | 
						||
| 
								 | 
							
								  while (i--) {
							 | 
						||
| 
								 | 
							
								    Node *n = &t->node[i];
							 | 
						||
| 
								 | 
							
								    if (!isempty(gval(n))) {
							 | 
						||
| 
								 | 
							
								      if (keyisinteger(n))
							 | 
						||
| 
								 | 
							
								        ause += countint(keyival(n), nums);
							 | 
						||
| 
								 | 
							
								      totaluse++;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								  *pna += ause;
							 | 
						||
| 
								 | 
							
								  return totaluse;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/*
							 | 
						||
| 
								 | 
							
								** Creates an array for the hash part of a table with the given
							 | 
						||
| 
								 | 
							
								** size, or reuses the dummy node if size is zero.
							 | 
						||
| 
								 | 
							
								** The computation for size overflow is in two steps: the first
							 | 
						||
| 
								 | 
							
								** comparison ensures that the shift in the second one does not
							 | 
						||
| 
								 | 
							
								** overflow.
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								static void setnodevector (lua_State *L, Table *t, unsigned int size) {
							 | 
						||
| 
								 | 
							
								  if (size == 0) {  /* no elements to hash part? */
							 | 
						||
| 
								 | 
							
								    t->node = cast(Node *, dummynode);  /* use common 'dummynode' */
							 | 
						||
| 
								 | 
							
								    t->lsizenode = 0;
							 | 
						||
| 
								 | 
							
								    t->lastfree = NULL;  /* signal that it is using dummy node */
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								  else {
							 | 
						||
| 
								 | 
							
								    int i;
							 | 
						||
| 
								 | 
							
								    int lsize = luaO_ceillog2(size);
							 | 
						||
| 
								 | 
							
								    if (lsize > MAXHBITS || (1u << lsize) > MAXHSIZE)
							 | 
						||
| 
								 | 
							
								      luaG_runerror(L, "table overflow");
							 | 
						||
| 
								 | 
							
								    size = twoto(lsize);
							 | 
						||
| 
								 | 
							
								    t->node = luaM_newvector(L, size, Node);
							 | 
						||
| 
								 | 
							
								    for (i = 0; i < (int)size; i++) {
							 | 
						||
| 
								 | 
							
								      Node *n = gnode(t, i);
							 | 
						||
| 
								 | 
							
								      gnext(n) = 0;
							 | 
						||
| 
								 | 
							
								      setnilkey(n);
							 | 
						||
| 
								 | 
							
								      setempty(gval(n));
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								    t->lsizenode = cast_byte(lsize);
							 | 
						||
| 
								 | 
							
								    t->lastfree = gnode(t, size);  /* all positions are free */
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/*
							 | 
						||
| 
								 | 
							
								** (Re)insert all elements from the hash part of 'ot' into table 't'.
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								static void reinsert (lua_State *L, Table *ot, Table *t) {
							 | 
						||
| 
								 | 
							
								  int j;
							 | 
						||
| 
								 | 
							
								  int size = sizenode(ot);
							 | 
						||
| 
								 | 
							
								  for (j = 0; j < size; j++) {
							 | 
						||
| 
								 | 
							
								    Node *old = gnode(ot, j);
							 | 
						||
| 
								 | 
							
								    if (!isempty(gval(old))) {
							 | 
						||
| 
								 | 
							
								      /* doesn't need barrier/invalidate cache, as entry was
							 | 
						||
| 
								 | 
							
								         already present in the table */
							 | 
						||
| 
								 | 
							
								      TValue k;
							 | 
						||
| 
								 | 
							
								      getnodekey(L, &k, old);
							 | 
						||
| 
								 | 
							
								      luaH_set(L, t, &k, gval(old));
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/*
							 | 
						||
| 
								 | 
							
								** Exchange the hash part of 't1' and 't2'.
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								static void exchangehashpart (Table *t1, Table *t2) {
							 | 
						||
| 
								 | 
							
								  lu_byte lsizenode = t1->lsizenode;
							 | 
						||
| 
								 | 
							
								  Node *node = t1->node;
							 | 
						||
| 
								 | 
							
								  Node *lastfree = t1->lastfree;
							 | 
						||
| 
								 | 
							
								  t1->lsizenode = t2->lsizenode;
							 | 
						||
| 
								 | 
							
								  t1->node = t2->node;
							 | 
						||
| 
								 | 
							
								  t1->lastfree = t2->lastfree;
							 | 
						||
| 
								 | 
							
								  t2->lsizenode = lsizenode;
							 | 
						||
| 
								 | 
							
								  t2->node = node;
							 | 
						||
| 
								 | 
							
								  t2->lastfree = lastfree;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/*
							 | 
						||
| 
								 | 
							
								** Resize table 't' for the new given sizes. Both allocations (for
							 | 
						||
| 
								 | 
							
								** the hash part and for the array part) can fail, which creates some
							 | 
						||
| 
								 | 
							
								** subtleties. If the first allocation, for the hash part, fails, an
							 | 
						||
| 
								 | 
							
								** error is raised and that is it. Otherwise, it copies the elements from
							 | 
						||
| 
								 | 
							
								** the shrinking part of the array (if it is shrinking) into the new
							 | 
						||
| 
								 | 
							
								** hash. Then it reallocates the array part.  If that fails, the table
							 | 
						||
| 
								 | 
							
								** is in its original state; the function frees the new hash part and then
							 | 
						||
| 
								 | 
							
								** raises the allocation error. Otherwise, it sets the new hash part
							 | 
						||
| 
								 | 
							
								** into the table, initializes the new part of the array (if any) with
							 | 
						||
| 
								 | 
							
								** nils and reinserts the elements of the old hash back into the new
							 | 
						||
| 
								 | 
							
								** parts of the table.
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								void luaH_resize (lua_State *L, Table *t, unsigned int newasize,
							 | 
						||
| 
								 | 
							
								                                          unsigned int nhsize) {
							 | 
						||
| 
								 | 
							
								  unsigned int i;
							 | 
						||
| 
								 | 
							
								  Table newt;  /* to keep the new hash part */
							 | 
						||
| 
								 | 
							
								  unsigned int oldasize = setlimittosize(t);
							 | 
						||
| 
								 | 
							
								  TValue *newarray;
							 | 
						||
| 
								 | 
							
								  /* create new hash part with appropriate size into 'newt' */
							 | 
						||
| 
								 | 
							
								  setnodevector(L, &newt, nhsize);
							 | 
						||
| 
								 | 
							
								  if (newasize < oldasize) {  /* will array shrink? */
							 | 
						||
| 
								 | 
							
								    t->alimit = newasize;  /* pretend array has new size... */
							 | 
						||
| 
								 | 
							
								    exchangehashpart(t, &newt);  /* and new hash */
							 | 
						||
| 
								 | 
							
								    /* re-insert into the new hash the elements from vanishing slice */
							 | 
						||
| 
								 | 
							
								    for (i = newasize; i < oldasize; i++) {
							 | 
						||
| 
								 | 
							
								      if (!isempty(&t->array[i]))
							 | 
						||
| 
								 | 
							
								        luaH_setint(L, t, i + 1, &t->array[i]);
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								    t->alimit = oldasize;  /* restore current size... */
							 | 
						||
| 
								 | 
							
								    exchangehashpart(t, &newt);  /* and hash (in case of errors) */
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								  /* allocate new array */
							 | 
						||
| 
								 | 
							
								  newarray = luaM_reallocvector(L, t->array, oldasize, newasize, TValue);
							 | 
						||
| 
								 | 
							
								  if (l_unlikely(newarray == NULL && newasize > 0)) {  /* allocation failed? */
							 | 
						||
| 
								 | 
							
								    freehash(L, &newt);  /* release new hash part */
							 | 
						||
| 
								 | 
							
								    luaM_error(L);  /* raise error (with array unchanged) */
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								  /* allocation ok; initialize new part of the array */
							 | 
						||
| 
								 | 
							
								  exchangehashpart(t, &newt);  /* 't' has the new hash ('newt' has the old) */
							 | 
						||
| 
								 | 
							
								  t->array = newarray;  /* set new array part */
							 | 
						||
| 
								 | 
							
								  t->alimit = newasize;
							 | 
						||
| 
								 | 
							
								  for (i = oldasize; i < newasize; i++)  /* clear new slice of the array */
							 | 
						||
| 
								 | 
							
								     setempty(&t->array[i]);
							 | 
						||
| 
								 | 
							
								  /* re-insert elements from old hash part into new parts */
							 | 
						||
| 
								 | 
							
								  reinsert(L, &newt, t);  /* 'newt' now has the old hash */
							 | 
						||
| 
								 | 
							
								  freehash(L, &newt);  /* free old hash part */
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								void luaH_resizearray (lua_State *L, Table *t, unsigned int nasize) {
							 | 
						||
| 
								 | 
							
								  int nsize = allocsizenode(t);
							 | 
						||
| 
								 | 
							
								  luaH_resize(L, t, nasize, nsize);
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/*
							 | 
						||
| 
								 | 
							
								** nums[i] = number of keys 'k' where 2^(i - 1) < k <= 2^i
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								static void rehash (lua_State *L, Table *t, const TValue *ek) {
							 | 
						||
| 
								 | 
							
								  unsigned int asize;  /* optimal size for array part */
							 | 
						||
| 
								 | 
							
								  unsigned int na;  /* number of keys in the array part */
							 | 
						||
| 
								 | 
							
								  unsigned int nums[MAXABITS + 1];
							 | 
						||
| 
								 | 
							
								  int i;
							 | 
						||
| 
								 | 
							
								  int totaluse;
							 | 
						||
| 
								 | 
							
								  for (i = 0; i <= MAXABITS; i++) nums[i] = 0;  /* reset counts */
							 | 
						||
| 
								 | 
							
								  setlimittosize(t);
							 | 
						||
| 
								 | 
							
								  na = numusearray(t, nums);  /* count keys in array part */
							 | 
						||
| 
								 | 
							
								  totaluse = na;  /* all those keys are integer keys */
							 | 
						||
| 
								 | 
							
								  totaluse += numusehash(t, nums, &na);  /* count keys in hash part */
							 | 
						||
| 
								 | 
							
								  /* count extra key */
							 | 
						||
| 
								 | 
							
								  if (ttisinteger(ek))
							 | 
						||
| 
								 | 
							
								    na += countint(ivalue(ek), nums);
							 | 
						||
| 
								 | 
							
								  totaluse++;
							 | 
						||
| 
								 | 
							
								  /* compute new size for array part */
							 | 
						||
| 
								 | 
							
								  asize = computesizes(nums, &na);
							 | 
						||
| 
								 | 
							
								  /* resize the table to new computed sizes */
							 | 
						||
| 
								 | 
							
								  luaH_resize(L, t, asize, totaluse - na);
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/*
							 | 
						||
| 
								 | 
							
								** }=============================================================
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								Table *luaH_new (lua_State *L) {
							 | 
						||
| 
								 | 
							
								  GCObject *o = luaC_newobj(L, LUA_VTABLE, sizeof(Table));
							 | 
						||
| 
								 | 
							
								  Table *t = gco2t(o);
							 | 
						||
| 
								 | 
							
								  t->metatable = NULL;
							 | 
						||
| 
								 | 
							
								  t->flags = cast_byte(maskflags);  /* table has no metamethod fields */
							 | 
						||
| 
								 | 
							
								  t->array = NULL;
							 | 
						||
| 
								 | 
							
								  t->alimit = 0;
							 | 
						||
| 
								 | 
							
								  setnodevector(L, t, 0);
							 | 
						||
| 
								 | 
							
								  return t;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								void luaH_free (lua_State *L, Table *t) {
							 | 
						||
| 
								 | 
							
								  freehash(L, t);
							 | 
						||
| 
								 | 
							
								  luaM_freearray(L, t->array, luaH_realasize(t));
							 | 
						||
| 
								 | 
							
								  luaM_free(L, t);
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static Node *getfreepos (Table *t) {
							 | 
						||
| 
								 | 
							
								  if (!isdummy(t)) {
							 | 
						||
| 
								 | 
							
								    while (t->lastfree > t->node) {
							 | 
						||
| 
								 | 
							
								      t->lastfree--;
							 | 
						||
| 
								 | 
							
								      if (keyisnil(t->lastfree))
							 | 
						||
| 
								 | 
							
								        return t->lastfree;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								  return NULL;  /* could not find a free place */
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/*
							 | 
						||
| 
								 | 
							
								** inserts a new key into a hash table; first, check whether key's main
							 | 
						||
| 
								 | 
							
								** position is free. If not, check whether colliding node is in its main
							 | 
						||
| 
								 | 
							
								** position or not: if it is not, move colliding node to an empty place and
							 | 
						||
| 
								 | 
							
								** put new key in its main position; otherwise (colliding node is in its main
							 | 
						||
| 
								 | 
							
								** position), new key goes to an empty position.
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								void luaH_newkey (lua_State *L, Table *t, const TValue *key, TValue *value) {
							 | 
						||
| 
								 | 
							
								  Node *mp;
							 | 
						||
| 
								 | 
							
								  TValue aux;
							 | 
						||
| 
								 | 
							
								  if (l_unlikely(ttisnil(key)))
							 | 
						||
| 
								 | 
							
								    luaG_runerror(L, "table index is nil");
							 | 
						||
| 
								 | 
							
								  else if (ttisfloat(key)) {
							 | 
						||
| 
								 | 
							
								    lua_Number f = fltvalue(key);
							 | 
						||
| 
								 | 
							
								    lua_Integer k;
							 | 
						||
| 
								 | 
							
								    if (luaV_flttointeger(f, &k, F2Ieq)) {  /* does key fit in an integer? */
							 | 
						||
| 
								 | 
							
								      setivalue(&aux, k);
							 | 
						||
| 
								 | 
							
								      key = &aux;  /* insert it as an integer */
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								    else if (l_unlikely(luai_numisnan(f)))
							 | 
						||
| 
								 | 
							
								      luaG_runerror(L, "table index is NaN");
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								  if (ttisnil(value))
							 | 
						||
| 
								 | 
							
								    return;  /* do not insert nil values */
							 | 
						||
| 
								 | 
							
								  mp = mainpositionTV(t, key);
							 | 
						||
| 
								 | 
							
								  if (!isempty(gval(mp)) || isdummy(t)) {  /* main position is taken? */
							 | 
						||
| 
								 | 
							
								    Node *othern;
							 | 
						||
| 
								 | 
							
								    Node *f = getfreepos(t);  /* get a free place */
							 | 
						||
| 
								 | 
							
								    if (f == NULL) {  /* cannot find a free place? */
							 | 
						||
| 
								 | 
							
								      rehash(L, t, key);  /* grow table */
							 | 
						||
| 
								 | 
							
								      /* whatever called 'newkey' takes care of TM cache */
							 | 
						||
| 
								 | 
							
								      luaH_set(L, t, key, value);  /* insert key into grown table */
							 | 
						||
| 
								 | 
							
								      return;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								    lua_assert(!isdummy(t));
							 | 
						||
| 
								 | 
							
								    othern = mainposition(t, keytt(mp), &keyval(mp));
							 | 
						||
| 
								 | 
							
								    if (othern != mp) {  /* is colliding node out of its main position? */
							 | 
						||
| 
								 | 
							
								      /* yes; move colliding node into free position */
							 | 
						||
| 
								 | 
							
								      while (othern + gnext(othern) != mp)  /* find previous */
							 | 
						||
| 
								 | 
							
								        othern += gnext(othern);
							 | 
						||
| 
								 | 
							
								      gnext(othern) = cast_int(f - othern);  /* rechain to point to 'f' */
							 | 
						||
| 
								 | 
							
								      *f = *mp;  /* copy colliding node into free pos. (mp->next also goes) */
							 | 
						||
| 
								 | 
							
								      if (gnext(mp) != 0) {
							 | 
						||
| 
								 | 
							
								        gnext(f) += cast_int(mp - f);  /* correct 'next' */
							 | 
						||
| 
								 | 
							
								        gnext(mp) = 0;  /* now 'mp' is free */
							 | 
						||
| 
								 | 
							
								      }
							 | 
						||
| 
								 | 
							
								      setempty(gval(mp));
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								    else {  /* colliding node is in its own main position */
							 | 
						||
| 
								 | 
							
								      /* new node will go into free position */
							 | 
						||
| 
								 | 
							
								      if (gnext(mp) != 0)
							 | 
						||
| 
								 | 
							
								        gnext(f) = cast_int((mp + gnext(mp)) - f);  /* chain new position */
							 | 
						||
| 
								 | 
							
								      else lua_assert(gnext(f) == 0);
							 | 
						||
| 
								 | 
							
								      gnext(mp) = cast_int(f - mp);
							 | 
						||
| 
								 | 
							
								      mp = f;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								  setnodekey(L, mp, key);
							 | 
						||
| 
								 | 
							
								  luaC_barrierback(L, obj2gco(t), key);
							 | 
						||
| 
								 | 
							
								  lua_assert(isempty(gval(mp)));
							 | 
						||
| 
								 | 
							
								  setobj2t(L, gval(mp), value);
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/*
							 | 
						||
| 
								 | 
							
								** Search function for integers. If integer is inside 'alimit', get it
							 | 
						||
| 
								 | 
							
								** directly from the array part. Otherwise, if 'alimit' is not equal to
							 | 
						||
| 
								 | 
							
								** the real size of the array, key still can be in the array part. In
							 | 
						||
| 
								 | 
							
								** this case, try to avoid a call to 'luaH_realasize' when key is just
							 | 
						||
| 
								 | 
							
								** one more than the limit (so that it can be incremented without
							 | 
						||
| 
								 | 
							
								** changing the real size of the array).
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								const TValue *luaH_getint (Table *t, lua_Integer key) {
							 | 
						||
| 
								 | 
							
								  if (l_castS2U(key) - 1u < t->alimit)  /* 'key' in [1, t->alimit]? */
							 | 
						||
| 
								 | 
							
								    return &t->array[key - 1];
							 | 
						||
| 
								 | 
							
								  else if (!limitequalsasize(t) &&  /* key still may be in the array part? */
							 | 
						||
| 
								 | 
							
								           (l_castS2U(key) == t->alimit + 1 ||
							 | 
						||
| 
								 | 
							
								            l_castS2U(key) - 1u < luaH_realasize(t))) {
							 | 
						||
| 
								 | 
							
								    t->alimit = cast_uint(key);  /* probably '#t' is here now */
							 | 
						||
| 
								 | 
							
								    return &t->array[key - 1];
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								  else {
							 | 
						||
| 
								 | 
							
								    Node *n = hashint(t, key);
							 | 
						||
| 
								 | 
							
								    for (;;) {  /* check whether 'key' is somewhere in the chain */
							 | 
						||
| 
								 | 
							
								      if (keyisinteger(n) && keyival(n) == key)
							 | 
						||
| 
								 | 
							
								        return gval(n);  /* that's it */
							 | 
						||
| 
								 | 
							
								      else {
							 | 
						||
| 
								 | 
							
								        int nx = gnext(n);
							 | 
						||
| 
								 | 
							
								        if (nx == 0) break;
							 | 
						||
| 
								 | 
							
								        n += nx;
							 | 
						||
| 
								 | 
							
								      }
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								    return &absentkey;
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/*
							 | 
						||
| 
								 | 
							
								** search function for short strings
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								const TValue *luaH_getshortstr (Table *t, TString *key) {
							 | 
						||
| 
								 | 
							
								  Node *n = hashstr(t, key);
							 | 
						||
| 
								 | 
							
								  lua_assert(key->tt == LUA_VSHRSTR);
							 | 
						||
| 
								 | 
							
								  for (;;) {  /* check whether 'key' is somewhere in the chain */
							 | 
						||
| 
								 | 
							
								    if (keyisshrstr(n) && eqshrstr(keystrval(n), key))
							 | 
						||
| 
								 | 
							
								      return gval(n);  /* that's it */
							 | 
						||
| 
								 | 
							
								    else {
							 | 
						||
| 
								 | 
							
								      int nx = gnext(n);
							 | 
						||
| 
								 | 
							
								      if (nx == 0)
							 | 
						||
| 
								 | 
							
								        return &absentkey;  /* not found */
							 | 
						||
| 
								 | 
							
								      n += nx;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								const TValue *luaH_getstr (Table *t, TString *key) {
							 | 
						||
| 
								 | 
							
								  if (key->tt == LUA_VSHRSTR)
							 | 
						||
| 
								 | 
							
								    return luaH_getshortstr(t, key);
							 | 
						||
| 
								 | 
							
								  else {  /* for long strings, use generic case */
							 | 
						||
| 
								 | 
							
								    TValue ko;
							 | 
						||
| 
								 | 
							
								    setsvalue(cast(lua_State *, NULL), &ko, key);
							 | 
						||
| 
								 | 
							
								    return getgeneric(t, &ko, 0);
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/*
							 | 
						||
| 
								 | 
							
								** main search function
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								const TValue *luaH_get (Table *t, const TValue *key) {
							 | 
						||
| 
								 | 
							
								  switch (ttypetag(key)) {
							 | 
						||
| 
								 | 
							
								    case LUA_VSHRSTR: return luaH_getshortstr(t, tsvalue(key));
							 | 
						||
| 
								 | 
							
								    case LUA_VNUMINT: return luaH_getint(t, ivalue(key));
							 | 
						||
| 
								 | 
							
								    case LUA_VNIL: return &absentkey;
							 | 
						||
| 
								 | 
							
								    case LUA_VNUMFLT: {
							 | 
						||
| 
								 | 
							
								      lua_Integer k;
							 | 
						||
| 
								 | 
							
								      if (luaV_flttointeger(fltvalue(key), &k, F2Ieq)) /* integral index? */
							 | 
						||
| 
								 | 
							
								        return luaH_getint(t, k);  /* use specialized version */
							 | 
						||
| 
								 | 
							
								      /* else... */
							 | 
						||
| 
								 | 
							
								    }  /* FALLTHROUGH */
							 | 
						||
| 
								 | 
							
								    default:
							 | 
						||
| 
								 | 
							
								      return getgeneric(t, key, 0);
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/*
							 | 
						||
| 
								 | 
							
								** Finish a raw "set table" operation, where 'slot' is where the value
							 | 
						||
| 
								 | 
							
								** should have been (the result of a previous "get table").
							 | 
						||
| 
								 | 
							
								** Beware: when using this function you probably need to check a GC
							 | 
						||
| 
								 | 
							
								** barrier and invalidate the TM cache.
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								void luaH_finishset (lua_State *L, Table *t, const TValue *key,
							 | 
						||
| 
								 | 
							
								                                   const TValue *slot, TValue *value) {
							 | 
						||
| 
								 | 
							
								  if (isabstkey(slot))
							 | 
						||
| 
								 | 
							
								    luaH_newkey(L, t, key, value);
							 | 
						||
| 
								 | 
							
								  else
							 | 
						||
| 
								 | 
							
								    setobj2t(L, cast(TValue *, slot), value);
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/*
							 | 
						||
| 
								 | 
							
								** beware: when using this function you probably need to check a GC
							 | 
						||
| 
								 | 
							
								** barrier and invalidate the TM cache.
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								void luaH_set (lua_State *L, Table *t, const TValue *key, TValue *value) {
							 | 
						||
| 
								 | 
							
								  const TValue *slot = luaH_get(t, key);
							 | 
						||
| 
								 | 
							
								  luaH_finishset(L, t, key, slot, value);
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								void luaH_setint (lua_State *L, Table *t, lua_Integer key, TValue *value) {
							 | 
						||
| 
								 | 
							
								  const TValue *p = luaH_getint(t, key);
							 | 
						||
| 
								 | 
							
								  if (isabstkey(p)) {
							 | 
						||
| 
								 | 
							
								    TValue k;
							 | 
						||
| 
								 | 
							
								    setivalue(&k, key);
							 | 
						||
| 
								 | 
							
								    luaH_newkey(L, t, &k, value);
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								  else
							 | 
						||
| 
								 | 
							
								    setobj2t(L, cast(TValue *, p), value);
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/*
							 | 
						||
| 
								 | 
							
								** Try to find a boundary in the hash part of table 't'. From the
							 | 
						||
| 
								 | 
							
								** caller, we know that 'j' is zero or present and that 'j + 1' is
							 | 
						||
| 
								 | 
							
								** present. We want to find a larger key that is absent from the
							 | 
						||
| 
								 | 
							
								** table, so that we can do a binary search between the two keys to
							 | 
						||
| 
								 | 
							
								** find a boundary. We keep doubling 'j' until we get an absent index.
							 | 
						||
| 
								 | 
							
								** If the doubling would overflow, we try LUA_MAXINTEGER. If it is
							 | 
						||
| 
								 | 
							
								** absent, we are ready for the binary search. ('j', being max integer,
							 | 
						||
| 
								 | 
							
								** is larger or equal to 'i', but it cannot be equal because it is
							 | 
						||
| 
								 | 
							
								** absent while 'i' is present; so 'j > i'.) Otherwise, 'j' is a
							 | 
						||
| 
								 | 
							
								** boundary. ('j + 1' cannot be a present integer key because it is
							 | 
						||
| 
								 | 
							
								** not a valid integer in Lua.)
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								static lua_Unsigned hash_search (Table *t, lua_Unsigned j) {
							 | 
						||
| 
								 | 
							
								  lua_Unsigned i;
							 | 
						||
| 
								 | 
							
								  if (j == 0) j++;  /* the caller ensures 'j + 1' is present */
							 | 
						||
| 
								 | 
							
								  do {
							 | 
						||
| 
								 | 
							
								    i = j;  /* 'i' is a present index */
							 | 
						||
| 
								 | 
							
								    if (j <= l_castS2U(LUA_MAXINTEGER) / 2)
							 | 
						||
| 
								 | 
							
								      j *= 2;
							 | 
						||
| 
								 | 
							
								    else {
							 | 
						||
| 
								 | 
							
								      j = LUA_MAXINTEGER;
							 | 
						||
| 
								 | 
							
								      if (isempty(luaH_getint(t, j)))  /* t[j] not present? */
							 | 
						||
| 
								 | 
							
								        break;  /* 'j' now is an absent index */
							 | 
						||
| 
								 | 
							
								      else  /* weird case */
							 | 
						||
| 
								 | 
							
								        return j;  /* well, max integer is a boundary... */
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								  } while (!isempty(luaH_getint(t, j)));  /* repeat until an absent t[j] */
							 | 
						||
| 
								 | 
							
								  /* i < j  &&  t[i] present  &&  t[j] absent */
							 | 
						||
| 
								 | 
							
								  while (j - i > 1u) {  /* do a binary search between them */
							 | 
						||
| 
								 | 
							
								    lua_Unsigned m = (i + j) / 2;
							 | 
						||
| 
								 | 
							
								    if (isempty(luaH_getint(t, m))) j = m;
							 | 
						||
| 
								 | 
							
								    else i = m;
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								  return i;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								static unsigned int binsearch (const TValue *array, unsigned int i,
							 | 
						||
| 
								 | 
							
								                                                    unsigned int j) {
							 | 
						||
| 
								 | 
							
								  while (j - i > 1u) {  /* binary search */
							 | 
						||
| 
								 | 
							
								    unsigned int m = (i + j) / 2;
							 | 
						||
| 
								 | 
							
								    if (isempty(&array[m - 1])) j = m;
							 | 
						||
| 
								 | 
							
								    else i = m;
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								  return i;
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/*
							 | 
						||
| 
								 | 
							
								** Try to find a boundary in table 't'. (A 'boundary' is an integer index
							 | 
						||
| 
								 | 
							
								** such that t[i] is present and t[i+1] is absent, or 0 if t[1] is absent
							 | 
						||
| 
								 | 
							
								** and 'maxinteger' if t[maxinteger] is present.)
							 | 
						||
| 
								 | 
							
								** (In the next explanation, we use Lua indices, that is, with base 1.
							 | 
						||
| 
								 | 
							
								** The code itself uses base 0 when indexing the array part of the table.)
							 | 
						||
| 
								 | 
							
								** The code starts with 'limit = t->alimit', a position in the array
							 | 
						||
| 
								 | 
							
								** part that may be a boundary.
							 | 
						||
| 
								 | 
							
								**
							 | 
						||
| 
								 | 
							
								** (1) If 't[limit]' is empty, there must be a boundary before it.
							 | 
						||
| 
								 | 
							
								** As a common case (e.g., after 't[#t]=nil'), check whether 'limit-1'
							 | 
						||
| 
								 | 
							
								** is present. If so, it is a boundary. Otherwise, do a binary search
							 | 
						||
| 
								 | 
							
								** between 0 and limit to find a boundary. In both cases, try to
							 | 
						||
| 
								 | 
							
								** use this boundary as the new 'alimit', as a hint for the next call.
							 | 
						||
| 
								 | 
							
								**
							 | 
						||
| 
								 | 
							
								** (2) If 't[limit]' is not empty and the array has more elements
							 | 
						||
| 
								 | 
							
								** after 'limit', try to find a boundary there. Again, try first
							 | 
						||
| 
								 | 
							
								** the special case (which should be quite frequent) where 'limit+1'
							 | 
						||
| 
								 | 
							
								** is empty, so that 'limit' is a boundary. Otherwise, check the
							 | 
						||
| 
								 | 
							
								** last element of the array part. If it is empty, there must be a
							 | 
						||
| 
								 | 
							
								** boundary between the old limit (present) and the last element
							 | 
						||
| 
								 | 
							
								** (absent), which is found with a binary search. (This boundary always
							 | 
						||
| 
								 | 
							
								** can be a new limit.)
							 | 
						||
| 
								 | 
							
								**
							 | 
						||
| 
								 | 
							
								** (3) The last case is when there are no elements in the array part
							 | 
						||
| 
								 | 
							
								** (limit == 0) or its last element (the new limit) is present.
							 | 
						||
| 
								 | 
							
								** In this case, must check the hash part. If there is no hash part
							 | 
						||
| 
								 | 
							
								** or 'limit+1' is absent, 'limit' is a boundary.  Otherwise, call
							 | 
						||
| 
								 | 
							
								** 'hash_search' to find a boundary in the hash part of the table.
							 | 
						||
| 
								 | 
							
								** (In those cases, the boundary is not inside the array part, and
							 | 
						||
| 
								 | 
							
								** therefore cannot be used as a new limit.)
							 | 
						||
| 
								 | 
							
								*/
							 | 
						||
| 
								 | 
							
								lua_Unsigned luaH_getn (Table *t) {
							 | 
						||
| 
								 | 
							
								  unsigned int limit = t->alimit;
							 | 
						||
| 
								 | 
							
								  if (limit > 0 && isempty(&t->array[limit - 1])) {  /* (1)? */
							 | 
						||
| 
								 | 
							
								    /* there must be a boundary before 'limit' */
							 | 
						||
| 
								 | 
							
								    if (limit >= 2 && !isempty(&t->array[limit - 2])) {
							 | 
						||
| 
								 | 
							
								      /* 'limit - 1' is a boundary; can it be a new limit? */
							 | 
						||
| 
								 | 
							
								      if (ispow2realasize(t) && !ispow2(limit - 1)) {
							 | 
						||
| 
								 | 
							
								        t->alimit = limit - 1;
							 | 
						||
| 
								 | 
							
								        setnorealasize(t);  /* now 'alimit' is not the real size */
							 | 
						||
| 
								 | 
							
								      }
							 | 
						||
| 
								 | 
							
								      return limit - 1;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								    else {  /* must search for a boundary in [0, limit] */
							 | 
						||
| 
								 | 
							
								      unsigned int boundary = binsearch(t->array, 0, limit);
							 | 
						||
| 
								 | 
							
								      /* can this boundary represent the real size of the array? */
							 | 
						||
| 
								 | 
							
								      if (ispow2realasize(t) && boundary > luaH_realasize(t) / 2) {
							 | 
						||
| 
								 | 
							
								        t->alimit = boundary;  /* use it as the new limit */
							 | 
						||
| 
								 | 
							
								        setnorealasize(t);
							 | 
						||
| 
								 | 
							
								      }
							 | 
						||
| 
								 | 
							
								      return boundary;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								  /* 'limit' is zero or present in table */
							 | 
						||
| 
								 | 
							
								  if (!limitequalsasize(t)) {  /* (2)? */
							 | 
						||
| 
								 | 
							
								    /* 'limit' > 0 and array has more elements after 'limit' */
							 | 
						||
| 
								 | 
							
								    if (isempty(&t->array[limit]))  /* 'limit + 1' is empty? */
							 | 
						||
| 
								 | 
							
								      return limit;  /* this is the boundary */
							 | 
						||
| 
								 | 
							
								    /* else, try last element in the array */
							 | 
						||
| 
								 | 
							
								    limit = luaH_realasize(t);
							 | 
						||
| 
								 | 
							
								    if (isempty(&t->array[limit - 1])) {  /* empty? */
							 | 
						||
| 
								 | 
							
								      /* there must be a boundary in the array after old limit,
							 | 
						||
| 
								 | 
							
								         and it must be a valid new limit */
							 | 
						||
| 
								 | 
							
								      unsigned int boundary = binsearch(t->array, t->alimit, limit);
							 | 
						||
| 
								 | 
							
								      t->alimit = boundary;
							 | 
						||
| 
								 | 
							
								      return boundary;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								    /* else, new limit is present in the table; check the hash part */
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								  /* (3) 'limit' is the last element and either is zero or present in table */
							 | 
						||
| 
								 | 
							
								  lua_assert(limit == luaH_realasize(t) &&
							 | 
						||
| 
								 | 
							
								             (limit == 0 || !isempty(&t->array[limit - 1])));
							 | 
						||
| 
								 | 
							
								  if (isdummy(t) || isempty(luaH_getint(t, cast(lua_Integer, limit + 1))))
							 | 
						||
| 
								 | 
							
								    return limit;  /* 'limit + 1' is absent */
							 | 
						||
| 
								 | 
							
								  else  /* 'limit + 1' is also present */
							 | 
						||
| 
								 | 
							
								    return hash_search(t, limit);
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#if defined(LUA_DEBUG)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								/* export these functions for the test library */
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								Node *luaH_mainposition (const Table *t, const TValue *key) {
							 | 
						||
| 
								 | 
							
								  return mainpositionTV(t, key);
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								int luaH_isdummy (const Table *t) { return isdummy(t); }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#endif
							 |