318 lines
11 KiB
Go
318 lines
11 KiB
Go
// Based on code from github.com/go-gl/mathgl:
|
|
// Copyright 2014 The go-gl Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
package mat4
|
|
|
|
import (
|
|
"bytes"
|
|
"fmt"
|
|
"text/tabwriter"
|
|
|
|
"golang.org/x/image/math/f32"
|
|
|
|
"zworld/plugin/math"
|
|
"zworld/plugin/math/vec3"
|
|
"zworld/plugin/math/vec4"
|
|
)
|
|
|
|
// T holds a 4x4 float32 matrix
|
|
type T f32.Mat4
|
|
|
|
// Add performs an element-wise addition of two matrices, this is
|
|
// equivalent to iterating over every element of m and adding the corresponding value of m2.
|
|
func (m *T) Add(m2 *T) T {
|
|
return T{
|
|
m[0] + m2[0], m[1] + m2[1], m[2] + m2[2], m[3] + m2[3],
|
|
m[4] + m2[4], m[5] + m2[5], m[6] + m2[6], m[7] + m2[7],
|
|
m[8] + m2[8], m[9] + m2[9], m[10] + m2[10], m[11] + m2[11],
|
|
m[12] + m2[12], m[13] + m2[13], m[14] + m2[14], m[15] + m2[15],
|
|
}
|
|
}
|
|
|
|
// Sub performs an element-wise subtraction of two matrices, this is
|
|
// equivalent to iterating over every element of m and subtracting the corresponding value of m2.
|
|
func (m *T) Sub(m2 *T) T {
|
|
return T{
|
|
m[0] - m2[0], m[1] - m2[1], m[2] - m2[2], m[3] - m2[3],
|
|
m[4] - m2[4], m[5] - m2[5], m[6] - m2[6], m[7] - m2[7],
|
|
m[8] - m2[8], m[9] - m2[9], m[10] - m2[10], m[11] - m2[11],
|
|
m[12] - m2[12], m[13] - m2[13], m[14] - m2[14], m[15] - m2[15],
|
|
}
|
|
}
|
|
|
|
// Scale performs a scalar multiplcation of the matrix. This is equivalent to iterating
|
|
// over every element of the matrix and multiply it by c.
|
|
func (m T) Scale(c float32) T {
|
|
return T{
|
|
m[0] * c, m[1] * c, m[2] * c, m[3] * c,
|
|
m[4] * c, m[5] * c, m[6] * c, m[7] * c,
|
|
m[8] * c, m[9] * c, m[10] * c, m[11] * c,
|
|
m[12] * c, m[13] * c, m[14] * c, m[15] * c,
|
|
}
|
|
}
|
|
|
|
// VMul multiplies a vec4 with the matrix
|
|
func (m *T) VMul(v vec4.T) vec4.T {
|
|
return vec4.T{
|
|
X: m[0]*v.X + m[4]*v.Y + m[8]*v.Z + m[12]*v.W,
|
|
Y: m[1]*v.X + m[5]*v.Y + m[9]*v.Z + m[13]*v.W,
|
|
Z: m[2]*v.X + m[6]*v.Y + m[10]*v.Z + m[14]*v.W,
|
|
W: m[3]*v.X + m[7]*v.Y + m[11]*v.Z + m[15]*v.W,
|
|
}
|
|
}
|
|
|
|
// TransformPoint transforms a point to world space
|
|
func (m *T) TransformPoint(v vec3.T) vec3.T {
|
|
p := vec4.Extend(v, 1)
|
|
vt := m.VMul(p)
|
|
return vt.XYZ().Scaled(1 / vt.W)
|
|
}
|
|
|
|
// TransformDir transforms a direction vector to world space
|
|
func (m *T) TransformDir(v vec3.T) vec3.T {
|
|
p := vec4.Extend(v, 0)
|
|
vt := m.VMul(p)
|
|
return vt.XYZ()
|
|
}
|
|
|
|
// Mul performs a "matrix product" between this matrix and another of the same dimension
|
|
func (a *T) Mul(b *T) T {
|
|
return T{
|
|
a[0]*b[0] + a[4]*b[1] + a[8]*b[2] + a[12]*b[3],
|
|
a[1]*b[0] + a[5]*b[1] + a[9]*b[2] + a[13]*b[3],
|
|
a[2]*b[0] + a[6]*b[1] + a[10]*b[2] + a[14]*b[3],
|
|
a[3]*b[0] + a[7]*b[1] + a[11]*b[2] + a[15]*b[3],
|
|
|
|
a[0]*b[4] + a[4]*b[5] + a[8]*b[6] + a[12]*b[7],
|
|
a[1]*b[4] + a[5]*b[5] + a[9]*b[6] + a[13]*b[7],
|
|
a[2]*b[4] + a[6]*b[5] + a[10]*b[6] + a[14]*b[7],
|
|
a[3]*b[4] + a[7]*b[5] + a[11]*b[6] + a[15]*b[7],
|
|
|
|
a[0]*b[8] + a[4]*b[9] + a[8]*b[10] + a[12]*b[11],
|
|
a[1]*b[8] + a[5]*b[9] + a[9]*b[10] + a[13]*b[11],
|
|
a[2]*b[8] + a[6]*b[9] + a[10]*b[10] + a[14]*b[11],
|
|
a[3]*b[8] + a[7]*b[9] + a[11]*b[10] + a[15]*b[11],
|
|
|
|
a[0]*b[12] + a[4]*b[13] + a[8]*b[14] + a[12]*b[15],
|
|
a[1]*b[12] + a[5]*b[13] + a[9]*b[14] + a[13]*b[15],
|
|
a[2]*b[12] + a[6]*b[13] + a[10]*b[14] + a[14]*b[15],
|
|
a[3]*b[12] + a[7]*b[13] + a[11]*b[14] + a[15]*b[15],
|
|
}
|
|
}
|
|
|
|
// Transpose produces the transpose of this matrix. For any MxN matrix
|
|
// the transpose is an NxM matrix with the rows swapped with the columns. For instance
|
|
// the transpose of the Mat3x2 is a Mat2x3 like so:
|
|
//
|
|
// [[a b]] [[a c e]]
|
|
// [[c d]] = [[b d f]]
|
|
// [[e f]]
|
|
func (m *T) Transpose() T {
|
|
return T{
|
|
m[0], m[4], m[8], m[12],
|
|
m[1], m[5], m[9], m[13],
|
|
m[2], m[6], m[10], m[14],
|
|
m[3], m[7], m[11], m[15],
|
|
}
|
|
}
|
|
|
|
// Det returns the determinant of a matrix. It is a measure of a square matrix's
|
|
// singularity and invertability, among other things. In this library, the
|
|
// determinant is hard coded based on pre-computed cofactor expansion, and uses
|
|
// no loops. Of course, the addition and multiplication must still be done.
|
|
func (m *T) Det() float32 {
|
|
return m[0]*m[5]*m[10]*m[15] - m[0]*m[5]*m[11]*m[14] - m[0]*m[6]*m[9]*m[15] + m[0]*m[6]*m[11]*m[13] +
|
|
m[0]*m[7]*m[9]*m[14] - m[0]*m[7]*m[10]*m[13] - m[1]*m[4]*m[10]*m[15] + m[1]*m[4]*m[11]*m[14] +
|
|
m[1]*m[6]*m[8]*m[15] - m[1]*m[6]*m[11]*m[12] - m[1]*m[7]*m[8]*m[14] + m[1]*m[7]*m[10]*m[12] +
|
|
m[2]*m[4]*m[9]*m[15] - m[2]*m[4]*m[11]*m[13] - m[2]*m[5]*m[8]*m[15] + m[2]*m[5]*m[11]*m[12] +
|
|
m[2]*m[7]*m[8]*m[13] - m[2]*m[7]*m[9]*m[12] - m[3]*m[4]*m[9]*m[14] + m[3]*m[4]*m[10]*m[13] +
|
|
m[3]*m[5]*m[8]*m[14] - m[3]*m[5]*m[10]*m[12] - m[3]*m[6]*m[8]*m[13] + m[3]*m[6]*m[9]*m[12]
|
|
}
|
|
|
|
// Invert computes the inverse of a square matrix. An inverse is a square matrix such that when multiplied by the
|
|
// original, yields the identity.
|
|
//
|
|
// M_inv * M = M * M_inv = I
|
|
//
|
|
// In this library, the math is precomputed, and uses no loops, though the multiplications, additions, determinant calculation, and scaling
|
|
// are still done. This can still be (relatively) expensive for a 4x4.
|
|
//
|
|
// This function checks the determinant to see if the matrix is invertible.
|
|
// If the determinant is 0.0, this function returns the zero matrix. However, due to floating point errors, it is
|
|
// entirely plausible to get a false positive or negative.
|
|
// In the future, an alternate function may be written which takes in a pre-computed determinant.
|
|
func (m *T) Invert() T {
|
|
det := m.Det()
|
|
if math.Equal(det, float32(0.0)) {
|
|
return T{}
|
|
}
|
|
|
|
retMat := T{
|
|
-m[7]*m[10]*m[13] + m[6]*m[11]*m[13] + m[7]*m[9]*m[14] - m[5]*m[11]*m[14] - m[6]*m[9]*m[15] + m[5]*m[10]*m[15],
|
|
m[3]*m[10]*m[13] - m[2]*m[11]*m[13] - m[3]*m[9]*m[14] + m[1]*m[11]*m[14] + m[2]*m[9]*m[15] - m[1]*m[10]*m[15],
|
|
-m[3]*m[6]*m[13] + m[2]*m[7]*m[13] + m[3]*m[5]*m[14] - m[1]*m[7]*m[14] - m[2]*m[5]*m[15] + m[1]*m[6]*m[15],
|
|
m[3]*m[6]*m[9] - m[2]*m[7]*m[9] - m[3]*m[5]*m[10] + m[1]*m[7]*m[10] + m[2]*m[5]*m[11] - m[1]*m[6]*m[11],
|
|
m[7]*m[10]*m[12] - m[6]*m[11]*m[12] - m[7]*m[8]*m[14] + m[4]*m[11]*m[14] + m[6]*m[8]*m[15] - m[4]*m[10]*m[15],
|
|
-m[3]*m[10]*m[12] + m[2]*m[11]*m[12] + m[3]*m[8]*m[14] - m[0]*m[11]*m[14] - m[2]*m[8]*m[15] + m[0]*m[10]*m[15],
|
|
m[3]*m[6]*m[12] - m[2]*m[7]*m[12] - m[3]*m[4]*m[14] + m[0]*m[7]*m[14] + m[2]*m[4]*m[15] - m[0]*m[6]*m[15],
|
|
-m[3]*m[6]*m[8] + m[2]*m[7]*m[8] + m[3]*m[4]*m[10] - m[0]*m[7]*m[10] - m[2]*m[4]*m[11] + m[0]*m[6]*m[11],
|
|
-m[7]*m[9]*m[12] + m[5]*m[11]*m[12] + m[7]*m[8]*m[13] - m[4]*m[11]*m[13] - m[5]*m[8]*m[15] + m[4]*m[9]*m[15],
|
|
m[3]*m[9]*m[12] - m[1]*m[11]*m[12] - m[3]*m[8]*m[13] + m[0]*m[11]*m[13] + m[1]*m[8]*m[15] - m[0]*m[9]*m[15],
|
|
-m[3]*m[5]*m[12] + m[1]*m[7]*m[12] + m[3]*m[4]*m[13] - m[0]*m[7]*m[13] - m[1]*m[4]*m[15] + m[0]*m[5]*m[15],
|
|
m[3]*m[5]*m[8] - m[1]*m[7]*m[8] - m[3]*m[4]*m[9] + m[0]*m[7]*m[9] + m[1]*m[4]*m[11] - m[0]*m[5]*m[11],
|
|
m[6]*m[9]*m[12] - m[5]*m[10]*m[12] - m[6]*m[8]*m[13] + m[4]*m[10]*m[13] + m[5]*m[8]*m[14] - m[4]*m[9]*m[14],
|
|
-m[2]*m[9]*m[12] + m[1]*m[10]*m[12] + m[2]*m[8]*m[13] - m[0]*m[10]*m[13] - m[1]*m[8]*m[14] + m[0]*m[9]*m[14],
|
|
m[2]*m[5]*m[12] - m[1]*m[6]*m[12] - m[2]*m[4]*m[13] + m[0]*m[6]*m[13] + m[1]*m[4]*m[14] - m[0]*m[5]*m[14],
|
|
-m[2]*m[5]*m[8] + m[1]*m[6]*m[8] + m[2]*m[4]*m[9] - m[0]*m[6]*m[9] - m[1]*m[4]*m[10] + m[0]*m[5]*m[10],
|
|
}
|
|
|
|
return retMat.Scale(1 / det)
|
|
}
|
|
|
|
// ApproxEqual performs an element-wise approximate equality test between two matrices,
|
|
// as if FloatEqual had been used.
|
|
func (m *T) ApproxEqual(m2 *T) bool {
|
|
for i := range m {
|
|
if !math.Equal(m[i], m2[i]) {
|
|
return false
|
|
}
|
|
}
|
|
return true
|
|
}
|
|
|
|
// ApproxEqualThreshold performs an element-wise approximate equality test between two matrices
|
|
// with a given epsilon threshold, as if FloatEqualThreshold had been used.
|
|
func (m *T) ApproxEqualThreshold(m2 *T, threshold float32) bool {
|
|
for i := range m {
|
|
if !math.EqualThreshold(m[i], m2[i], threshold) {
|
|
return false
|
|
}
|
|
}
|
|
return true
|
|
}
|
|
|
|
// At returns the matrix element at the given row and column.
|
|
// This is equivalent to mat[col * numRow + row] where numRow is constant
|
|
// (E.G. for a Mat3x2 it's equal to 3)
|
|
//
|
|
// This method is garbage-in garbage-out. For instance, on a T asking for
|
|
// At(5,0) will work just like At(1,1). Or it may panic if it's out of bounds.
|
|
func (m *T) At(row, col int) float32 {
|
|
return m[col*4+row]
|
|
}
|
|
|
|
// Set sets the corresponding matrix element at the given row and column.
|
|
func (m *T) Set(row, col int, value float32) {
|
|
m[col*4+row] = value
|
|
}
|
|
|
|
// Index returns the index of the given row and column, to be used with direct
|
|
// access. E.G. Index(0,0) = 0.
|
|
func (m *T) Index(row, col int) int {
|
|
return col*4 + row
|
|
}
|
|
|
|
// Row returns a vector representing the corresponding row (starting at row 0).
|
|
// This package makes no distinction between row and column vectors, so it
|
|
// will be a normal VecM for a MxN matrix.
|
|
func (m *T) Row(row int) vec4.T {
|
|
return vec4.T{
|
|
X: m[row+0],
|
|
Y: m[row+4],
|
|
Z: m[row+8],
|
|
W: m[row+12],
|
|
}
|
|
}
|
|
|
|
// Rows decomposes a matrix into its corresponding row vectors.
|
|
// This is equivalent to calling mat.Row for each row.
|
|
func (m *T) Rows() (row0, row1, row2, row3 vec4.T) {
|
|
return m.Row(0), m.Row(1), m.Row(2), m.Row(3)
|
|
}
|
|
|
|
// Col returns a vector representing the corresponding column (starting at col 0).
|
|
// This package makes no distinction between row and column vectors, so it
|
|
// will be a normal VecN for a MxN matrix.
|
|
func (m *T) Col(col int) vec4.T {
|
|
return vec4.T{
|
|
X: m[col*4+0],
|
|
Y: m[col*4+1],
|
|
Z: m[col*4+2],
|
|
W: m[col*4+3],
|
|
}
|
|
}
|
|
|
|
// Cols decomposes a matrix into its corresponding column vectors.
|
|
// This is equivalent to calling mat.Col for each column.
|
|
func (m *T) Cols() (col0, col1, col2, col3 vec4.T) {
|
|
return m.Col(0), m.Col(1), m.Col(2), m.Col(3)
|
|
}
|
|
|
|
// Trace is a basic operation on a square matrix that simply
|
|
// sums up all elements on the main diagonal (meaning all elements such that row==col).
|
|
func (m *T) Trace() float32 {
|
|
return m[0] + m[5] + m[10] + m[15]
|
|
}
|
|
|
|
// Abs returns the element-wise absolute value of this matrix
|
|
func (m *T) Abs() T {
|
|
return T{
|
|
math.Abs(m[0]), math.Abs(m[1]), math.Abs(m[2]), math.Abs(m[3]),
|
|
math.Abs(m[4]), math.Abs(m[5]), math.Abs(m[6]), math.Abs(m[7]),
|
|
math.Abs(m[8]), math.Abs(m[9]), math.Abs(m[10]), math.Abs(m[11]),
|
|
math.Abs(m[12]), math.Abs(m[13]), math.Abs(m[14]), math.Abs(m[15]),
|
|
}
|
|
}
|
|
|
|
// String pretty prints the matrix
|
|
func (m T) String() string {
|
|
buf := new(bytes.Buffer)
|
|
w := tabwriter.NewWriter(buf, 4, 4, 1, ' ', tabwriter.AlignRight)
|
|
for i := 0; i < 4; i++ {
|
|
r := m.Row(i)
|
|
fmt.Fprintf(w, "%f\t", r.X)
|
|
fmt.Fprintf(w, "%f\t", r.Y)
|
|
fmt.Fprintf(w, "%f\t", r.Z)
|
|
fmt.Fprintf(w, "%f\t", r.W)
|
|
}
|
|
w.Flush()
|
|
return buf.String()
|
|
}
|
|
|
|
// Right extracts the right vector from a transformation matrix
|
|
func (m *T) Right() vec3.T {
|
|
return vec3.T{
|
|
X: m[4*0+0],
|
|
Y: m[4*1+0],
|
|
Z: m[4*2+0],
|
|
}
|
|
}
|
|
|
|
// Up extracts the up vector from a transformation matrix
|
|
func (m *T) Up() vec3.T {
|
|
return vec3.T{
|
|
X: m[4*0+1],
|
|
Y: m[4*1+1],
|
|
Z: m[4*2+1],
|
|
}
|
|
}
|
|
|
|
// Forward extracts the forward vector from a transformation matrix
|
|
func (m *T) Forward() vec3.T {
|
|
return vec3.T{
|
|
X: m[4*0+2],
|
|
Y: m[4*1+2],
|
|
Z: m[4*2+2],
|
|
}
|
|
}
|
|
|
|
// Origin extracts origin point of the coordinate system represented by the matrix
|
|
func (m *T) Origin() vec3.T {
|
|
return vec3.T{
|
|
X: m[4*3+0],
|
|
Y: m[4*3+1],
|
|
Z: m[4*3+2],
|
|
}
|
|
}
|