206 lines
		
	
	
		
			4.4 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			206 lines
		
	
	
		
			4.4 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
package vec3
 | 
						|
 | 
						|
import (
 | 
						|
	"fmt"
 | 
						|
	"zworld/plugin/math"
 | 
						|
 | 
						|
	"zworld/plugin/math/vec2"
 | 
						|
)
 | 
						|
 | 
						|
var (
 | 
						|
	// Zero is the zero vector
 | 
						|
	Zero = T{0, 0, 0}
 | 
						|
 | 
						|
	// One is the unit vector
 | 
						|
	One = T{1, 1, 1}
 | 
						|
 | 
						|
	// UnitX is the unit vector in the X direction (right)
 | 
						|
	UnitX = T{1, 0, 0}
 | 
						|
	Right = T{1, 0, 0}
 | 
						|
 | 
						|
	// UnitXN is the unit vector in the negative X direction (left)
 | 
						|
	UnitXN = T{-1, 0, 0}
 | 
						|
	Left   = T{-1, 0, 0}
 | 
						|
 | 
						|
	// UnitY is the unit vector in the Y direction (up)
 | 
						|
	UnitY = T{0, 1, 0}
 | 
						|
	Up    = T{0, 1, 0}
 | 
						|
 | 
						|
	// UnitYN is the unit vector in the negative Y direction (down)
 | 
						|
	UnitYN = T{0, -1, 0}
 | 
						|
	Down   = T{0, -1, 0}
 | 
						|
 | 
						|
	// UnitZ is the unit vector in the Z direction (forward)
 | 
						|
	UnitZ   = T{0, 0, 1}
 | 
						|
	Forward = T{0, 0, 1}
 | 
						|
 | 
						|
	// UnitZN is the unit vector in the negative Z direction (backward)
 | 
						|
	UnitZN   = T{0, 0, -1}
 | 
						|
	Backward = T{0, 0, 1}
 | 
						|
 | 
						|
	InfPos = T{math.InfPos, math.InfPos, math.InfPos}
 | 
						|
	InfNeg = T{math.InfNeg, math.InfNeg, math.InfNeg}
 | 
						|
)
 | 
						|
 | 
						|
// T holds a 3-component vector of 32-bit floats
 | 
						|
type T struct {
 | 
						|
	X, Y, Z float32
 | 
						|
}
 | 
						|
 | 
						|
// Slice converts the vector into a 3-element slice of float32
 | 
						|
func (v T) Slice() [3]float32 {
 | 
						|
	return [3]float32{v.X, v.Y, v.Z}
 | 
						|
}
 | 
						|
 | 
						|
// Length returns the length of the vector.
 | 
						|
// See also LengthSqr and Normalize.
 | 
						|
func (v T) Length() float32 {
 | 
						|
	return math.Sqrt(v.LengthSqr())
 | 
						|
}
 | 
						|
 | 
						|
// LengthSqr returns the squared length of the vector.
 | 
						|
// See also Length and Normalize.
 | 
						|
func (v T) LengthSqr() float32 {
 | 
						|
	return v.X*v.X + v.Y*v.Y + v.Z*v.Z
 | 
						|
}
 | 
						|
 | 
						|
// Abs returns a copy containing the absolute values of the vector components.
 | 
						|
func (v T) Abs() T {
 | 
						|
	return T{math.Abs(v.X), math.Abs(v.Y), math.Abs(v.Z)}
 | 
						|
}
 | 
						|
 | 
						|
// Normalize normalizes the vector to unit length.
 | 
						|
func (v *T) Normalize() {
 | 
						|
	sl := v.LengthSqr()
 | 
						|
	if sl == 0 || sl == 1 {
 | 
						|
		return
 | 
						|
	}
 | 
						|
	s := 1 / math.Sqrt(sl)
 | 
						|
	v.X *= s
 | 
						|
	v.Y *= s
 | 
						|
	v.Z *= s
 | 
						|
}
 | 
						|
 | 
						|
// Normalized returns a unit length normalized copy of the vector.
 | 
						|
func (v T) Normalized() T {
 | 
						|
	v.Normalize()
 | 
						|
	return v
 | 
						|
}
 | 
						|
 | 
						|
// Scale the vector by a constant (in-place)
 | 
						|
func (v *T) Scale(f float32) {
 | 
						|
	v.X *= f
 | 
						|
	v.Y *= f
 | 
						|
	v.Z *= f
 | 
						|
}
 | 
						|
 | 
						|
// Scaled returns a scaled vector
 | 
						|
func (v T) Scaled(f float32) T {
 | 
						|
	return T{v.X * f, v.Y * f, v.Z * f}
 | 
						|
}
 | 
						|
 | 
						|
// ScaleI returns a vector scaled by an integer factor
 | 
						|
func (v T) ScaleI(i int) T {
 | 
						|
	return v.Scaled(float32(i))
 | 
						|
}
 | 
						|
 | 
						|
// Invert the vector components
 | 
						|
func (v *T) Invert() {
 | 
						|
	v.X = -v.X
 | 
						|
	v.Y = -v.Y
 | 
						|
	v.Z = -v.Z
 | 
						|
}
 | 
						|
 | 
						|
// Inverted returns an inverted vector
 | 
						|
func (v *T) Inverted() T {
 | 
						|
	i := *v
 | 
						|
	i.Invert()
 | 
						|
	return i
 | 
						|
}
 | 
						|
 | 
						|
// Floor each components of the vector
 | 
						|
func (v T) Floor() T {
 | 
						|
	return T{math.Floor(v.X), math.Floor(v.Y), math.Floor(v.Z)}
 | 
						|
}
 | 
						|
 | 
						|
// Ceil each component of the vector
 | 
						|
func (v T) Ceil() T {
 | 
						|
	return T{math.Ceil(v.X), math.Ceil(v.Y), math.Ceil(v.Z)}
 | 
						|
}
 | 
						|
 | 
						|
// Round each component of the vector
 | 
						|
func (v T) Round() T {
 | 
						|
	return T{math.Round(v.X), math.Round(v.Y), math.Round(v.Z)}
 | 
						|
}
 | 
						|
 | 
						|
// Add each element of the vector with the corresponding element of another vector
 | 
						|
func (v T) Add(v2 T) T {
 | 
						|
	return T{
 | 
						|
		v.X + v2.X,
 | 
						|
		v.Y + v2.Y,
 | 
						|
		v.Z + v2.Z,
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
// Sub subtracts each element of the vector with the corresponding element of another vector
 | 
						|
func (v T) Sub(v2 T) T {
 | 
						|
	return T{
 | 
						|
		v.X - v2.X,
 | 
						|
		v.Y - v2.Y,
 | 
						|
		v.Z - v2.Z,
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
// Mul multiplies each element of the vector with the corresponding element of another vector
 | 
						|
func (v T) Mul(v2 T) T {
 | 
						|
	return T{
 | 
						|
		v.X * v2.X,
 | 
						|
		v.Y * v2.Y,
 | 
						|
		v.Z * v2.Z,
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
// XY returns a 2-component vector with the X, Y components of this vector
 | 
						|
func (v T) XY() vec2.T {
 | 
						|
	return vec2.T{X: v.X, Y: v.Y}
 | 
						|
}
 | 
						|
 | 
						|
// XZ returns a 2-component vector with the X, Z components of this vector
 | 
						|
func (v T) XZ() vec2.T {
 | 
						|
	return vec2.T{X: v.X, Y: v.Z}
 | 
						|
}
 | 
						|
 | 
						|
// YZ returns a 2-component vector with the Y, Z components of this vector
 | 
						|
func (v T) YZ() vec2.T {
 | 
						|
	return vec2.T{X: v.Y, Y: v.Z}
 | 
						|
}
 | 
						|
 | 
						|
// Div divides each element of the vector with the corresponding element of another vector
 | 
						|
func (v T) Div(v2 T) T {
 | 
						|
	return T{v.X / v2.X, v.Y / v2.Y, v.Z / v2.Z}
 | 
						|
}
 | 
						|
 | 
						|
// WithX returns a new vector with the X component set to a given value
 | 
						|
func (v T) WithX(x float32) T {
 | 
						|
	return T{x, v.Y, v.Z}
 | 
						|
}
 | 
						|
 | 
						|
// WithY returns a new vector with the Y component set to a given value
 | 
						|
func (v T) WithY(y float32) T {
 | 
						|
	return T{v.X, y, v.Z}
 | 
						|
}
 | 
						|
 | 
						|
// WithZ returns a new vector with the Z component set to a given value
 | 
						|
func (v T) WithZ(z float32) T {
 | 
						|
	return T{v.X, v.Y, z}
 | 
						|
}
 | 
						|
 | 
						|
func (v T) ApproxEqual(v2 T) bool {
 | 
						|
	epsilon := float32(0.0001)
 | 
						|
	return Distance(v, v2) < epsilon
 | 
						|
}
 | 
						|
 | 
						|
func (v T) String() string {
 | 
						|
	return fmt.Sprintf("%.3f,%.3f,%.3f", v.X, v.Y, v.Z)
 | 
						|
}
 |