package vec4 import ( "fmt" "zworld/plugin/math" "zworld/plugin/math/vec2" "zworld/plugin/math/vec3" ) var ( // Zero is the zero vector Zero = T{0, 0, 0, 0} // One is the unit vector One = T{1, 1, 1, 1} // UnitX returns a unit vector in the X direction UnitX = T{1, 0, 0, 0} // UnitY returns a unit vector in the Y direction UnitY = T{0, 1, 0, 0} // UnitZ returns a unit vector in the Z direction UnitZ = T{0, 0, 1, 0} // UnitW returns a unit vector in the W direction UnitW = T{0, 0, 0, 1} InfPos = T{math.InfPos, math.InfPos, math.InfPos, math.InfPos} InfNeg = T{math.InfNeg, math.InfNeg, math.InfNeg, math.InfNeg} ) // T holds a 4-component vector of 32-bit floats type T struct { X, Y, Z, W float32 } // Slice converts the vector into a 4-element slice of float32 func (v T) Slice() [4]float32 { return [4]float32{v.X, v.Y, v.Z, v.W} } // Length returns the length of the vector. // See also LengthSqr and Normalize. func (v T) Length() float32 { return math.Sqrt(v.LengthSqr()) } // LengthSqr returns the squared length of the vector. // See also Length and Normalize. func (v T) LengthSqr() float32 { return v.X*v.X + v.Y*v.Y + v.Z*v.Z + v.W*v.W } // Abs sets every component of the vector to its absolute value. func (v T) Abs() T { return T{ math.Abs(v.X), math.Abs(v.Y), math.Abs(v.Z), math.Abs(v.W), } } // Normalize normalizes the vector to unit length. func (v *T) Normalize() { sl := v.LengthSqr() if sl == 0 || sl == 1 { return } s := 1 / math.Sqrt(sl) v.X *= s v.Y *= s v.Z *= s v.W *= s } // Normalized returns a unit length normalized copy of the vector. func (v T) Normalized() T { v.Normalize() return v } // Scaled the vector func (v T) Scaled(f float32) T { return T{v.X * f, v.Y * f, v.Z * f, v.W * f} } // Scale the vector by a constant (in-place) func (v *T) Scale(f float32) { v.X *= f v.Y *= f v.Z *= f v.W *= f } // Invert the vector components func (v *T) Invert() { v.X = -v.X v.Y = -v.Y v.Z = -v.Z v.W = -v.W } // Inverted returns an inverted vector func (v T) Inverted() T { v.Invert() return v } // Add each element of the vector with the corresponding element of another vector func (v T) Add(v2 T) T { return T{v.X + v2.X, v.Y + v2.Y, v.Z + v2.Z, v.W + v2.W} } // Sub subtracts each element of the vector with the corresponding element of another vector func (v T) Sub(v2 T) T { return T{v.X - v2.X, v.Y - v2.Y, v.Z - v2.Z, v.W - v2.W} } // Mul multiplies each element of the vector with the corresponding element of another vector func (v T) Mul(v2 T) T { return T{v.X * v2.X, v.Y * v2.Y, v.Z * v2.Z, v.W * v2.W} } // XY returns a 2-component vector with the X, Y components func (v T) XY() vec2.T { return vec2.T{X: v.X, Y: v.Y} } // XYZ returns a 3-component vector with the X, Y, Z components func (v T) XYZ() vec3.T { return vec3.T{X: v.X, Y: v.Y, Z: v.Z} } // Div divides each element of the vector with the corresponding element of another vector func (v T) Div(v2 T) T { return T{v.X / v2.X, v.Y / v2.Y, v.Z / v2.Z, v.W / v2.W} } func (v T) String() string { return fmt.Sprintf("%.3f,%.3f,%.3f,%.3f", v.X, v.Y, v.Z, v.W) }