zworld-demo/plugin/math/vec3/vec3.go

206 lines
4.4 KiB
Go
Raw Normal View History

2023-12-22 22:04:27 +08:00
package vec3
import (
"fmt"
"zworld/plugin/math"
"zworld/plugin/math/vec2"
)
var (
// Zero is the zero vector
Zero = T{0, 0, 0}
// One is the unit vector
One = T{1, 1, 1}
// UnitX is the unit vector in the X direction (right)
UnitX = T{1, 0, 0}
Right = T{1, 0, 0}
// UnitXN is the unit vector in the negative X direction (left)
UnitXN = T{-1, 0, 0}
Left = T{-1, 0, 0}
// UnitY is the unit vector in the Y direction (up)
UnitY = T{0, 1, 0}
Up = T{0, 1, 0}
// UnitYN is the unit vector in the negative Y direction (down)
UnitYN = T{0, -1, 0}
Down = T{0, -1, 0}
// UnitZ is the unit vector in the Z direction (forward)
UnitZ = T{0, 0, 1}
Forward = T{0, 0, 1}
// UnitZN is the unit vector in the negative Z direction (backward)
UnitZN = T{0, 0, -1}
Backward = T{0, 0, 1}
InfPos = T{math.InfPos, math.InfPos, math.InfPos}
InfNeg = T{math.InfNeg, math.InfNeg, math.InfNeg}
)
// T holds a 3-component vector of 32-bit floats
type T struct {
X, Y, Z float32
}
// Slice converts the vector into a 3-element slice of float32
func (v T) Slice() [3]float32 {
return [3]float32{v.X, v.Y, v.Z}
}
// Length returns the length of the vector.
// See also LengthSqr and Normalize.
func (v T) Length() float32 {
return math.Sqrt(v.LengthSqr())
}
// LengthSqr returns the squared length of the vector.
// See also Length and Normalize.
func (v T) LengthSqr() float32 {
return v.X*v.X + v.Y*v.Y + v.Z*v.Z
}
// Abs returns a copy containing the absolute values of the vector components.
func (v T) Abs() T {
return T{math.Abs(v.X), math.Abs(v.Y), math.Abs(v.Z)}
}
// Normalize normalizes the vector to unit length.
func (v *T) Normalize() {
sl := v.LengthSqr()
if sl == 0 || sl == 1 {
return
}
s := 1 / math.Sqrt(sl)
v.X *= s
v.Y *= s
v.Z *= s
}
// Normalized returns a unit length normalized copy of the vector.
func (v T) Normalized() T {
v.Normalize()
return v
}
// Scale the vector by a constant (in-place)
func (v *T) Scale(f float32) {
v.X *= f
v.Y *= f
v.Z *= f
}
// Scaled returns a scaled vector
func (v T) Scaled(f float32) T {
return T{v.X * f, v.Y * f, v.Z * f}
}
// ScaleI returns a vector scaled by an integer factor
func (v T) ScaleI(i int) T {
return v.Scaled(float32(i))
}
// Invert the vector components
func (v *T) Invert() {
v.X = -v.X
v.Y = -v.Y
v.Z = -v.Z
}
// Inverted returns an inverted vector
func (v *T) Inverted() T {
i := *v
i.Invert()
return i
}
// Floor each components of the vector
func (v T) Floor() T {
return T{math.Floor(v.X), math.Floor(v.Y), math.Floor(v.Z)}
}
// Ceil each component of the vector
func (v T) Ceil() T {
return T{math.Ceil(v.X), math.Ceil(v.Y), math.Ceil(v.Z)}
}
// Round each component of the vector
func (v T) Round() T {
return T{math.Round(v.X), math.Round(v.Y), math.Round(v.Z)}
}
// Add each element of the vector with the corresponding element of another vector
func (v T) Add(v2 T) T {
return T{
v.X + v2.X,
v.Y + v2.Y,
v.Z + v2.Z,
}
}
// Sub subtracts each element of the vector with the corresponding element of another vector
func (v T) Sub(v2 T) T {
return T{
v.X - v2.X,
v.Y - v2.Y,
v.Z - v2.Z,
}
}
// Mul multiplies each element of the vector with the corresponding element of another vector
func (v T) Mul(v2 T) T {
return T{
v.X * v2.X,
v.Y * v2.Y,
v.Z * v2.Z,
}
}
// XY returns a 2-component vector with the X, Y components of this vector
func (v T) XY() vec2.T {
return vec2.T{X: v.X, Y: v.Y}
}
// XZ returns a 2-component vector with the X, Z components of this vector
func (v T) XZ() vec2.T {
return vec2.T{X: v.X, Y: v.Z}
}
// YZ returns a 2-component vector with the Y, Z components of this vector
func (v T) YZ() vec2.T {
return vec2.T{X: v.Y, Y: v.Z}
}
// Div divides each element of the vector with the corresponding element of another vector
func (v T) Div(v2 T) T {
return T{v.X / v2.X, v.Y / v2.Y, v.Z / v2.Z}
}
// WithX returns a new vector with the X component set to a given value
func (v T) WithX(x float32) T {
return T{x, v.Y, v.Z}
}
// WithY returns a new vector with the Y component set to a given value
func (v T) WithY(y float32) T {
return T{v.X, y, v.Z}
}
// WithZ returns a new vector with the Z component set to a given value
func (v T) WithZ(z float32) T {
return T{v.X, v.Y, z}
}
func (v T) ApproxEqual(v2 T) bool {
epsilon := float32(0.0001)
return Distance(v, v2) < epsilon
}
func (v T) String() string {
return fmt.Sprintf("%.3f,%.3f,%.3f", v.X, v.Y, v.Z)
}