206 lines
4.4 KiB
Go
206 lines
4.4 KiB
Go
|
|
package vec3
|
||
|
|
|
||
|
|
import (
|
||
|
|
"fmt"
|
||
|
|
"zworld/plugin/math"
|
||
|
|
|
||
|
|
"zworld/plugin/math/vec2"
|
||
|
|
)
|
||
|
|
|
||
|
|
var (
|
||
|
|
// Zero is the zero vector
|
||
|
|
Zero = T{0, 0, 0}
|
||
|
|
|
||
|
|
// One is the unit vector
|
||
|
|
One = T{1, 1, 1}
|
||
|
|
|
||
|
|
// UnitX is the unit vector in the X direction (right)
|
||
|
|
UnitX = T{1, 0, 0}
|
||
|
|
Right = T{1, 0, 0}
|
||
|
|
|
||
|
|
// UnitXN is the unit vector in the negative X direction (left)
|
||
|
|
UnitXN = T{-1, 0, 0}
|
||
|
|
Left = T{-1, 0, 0}
|
||
|
|
|
||
|
|
// UnitY is the unit vector in the Y direction (up)
|
||
|
|
UnitY = T{0, 1, 0}
|
||
|
|
Up = T{0, 1, 0}
|
||
|
|
|
||
|
|
// UnitYN is the unit vector in the negative Y direction (down)
|
||
|
|
UnitYN = T{0, -1, 0}
|
||
|
|
Down = T{0, -1, 0}
|
||
|
|
|
||
|
|
// UnitZ is the unit vector in the Z direction (forward)
|
||
|
|
UnitZ = T{0, 0, 1}
|
||
|
|
Forward = T{0, 0, 1}
|
||
|
|
|
||
|
|
// UnitZN is the unit vector in the negative Z direction (backward)
|
||
|
|
UnitZN = T{0, 0, -1}
|
||
|
|
Backward = T{0, 0, 1}
|
||
|
|
|
||
|
|
InfPos = T{math.InfPos, math.InfPos, math.InfPos}
|
||
|
|
InfNeg = T{math.InfNeg, math.InfNeg, math.InfNeg}
|
||
|
|
)
|
||
|
|
|
||
|
|
// T holds a 3-component vector of 32-bit floats
|
||
|
|
type T struct {
|
||
|
|
X, Y, Z float32
|
||
|
|
}
|
||
|
|
|
||
|
|
// Slice converts the vector into a 3-element slice of float32
|
||
|
|
func (v T) Slice() [3]float32 {
|
||
|
|
return [3]float32{v.X, v.Y, v.Z}
|
||
|
|
}
|
||
|
|
|
||
|
|
// Length returns the length of the vector.
|
||
|
|
// See also LengthSqr and Normalize.
|
||
|
|
func (v T) Length() float32 {
|
||
|
|
return math.Sqrt(v.LengthSqr())
|
||
|
|
}
|
||
|
|
|
||
|
|
// LengthSqr returns the squared length of the vector.
|
||
|
|
// See also Length and Normalize.
|
||
|
|
func (v T) LengthSqr() float32 {
|
||
|
|
return v.X*v.X + v.Y*v.Y + v.Z*v.Z
|
||
|
|
}
|
||
|
|
|
||
|
|
// Abs returns a copy containing the absolute values of the vector components.
|
||
|
|
func (v T) Abs() T {
|
||
|
|
return T{math.Abs(v.X), math.Abs(v.Y), math.Abs(v.Z)}
|
||
|
|
}
|
||
|
|
|
||
|
|
// Normalize normalizes the vector to unit length.
|
||
|
|
func (v *T) Normalize() {
|
||
|
|
sl := v.LengthSqr()
|
||
|
|
if sl == 0 || sl == 1 {
|
||
|
|
return
|
||
|
|
}
|
||
|
|
s := 1 / math.Sqrt(sl)
|
||
|
|
v.X *= s
|
||
|
|
v.Y *= s
|
||
|
|
v.Z *= s
|
||
|
|
}
|
||
|
|
|
||
|
|
// Normalized returns a unit length normalized copy of the vector.
|
||
|
|
func (v T) Normalized() T {
|
||
|
|
v.Normalize()
|
||
|
|
return v
|
||
|
|
}
|
||
|
|
|
||
|
|
// Scale the vector by a constant (in-place)
|
||
|
|
func (v *T) Scale(f float32) {
|
||
|
|
v.X *= f
|
||
|
|
v.Y *= f
|
||
|
|
v.Z *= f
|
||
|
|
}
|
||
|
|
|
||
|
|
// Scaled returns a scaled vector
|
||
|
|
func (v T) Scaled(f float32) T {
|
||
|
|
return T{v.X * f, v.Y * f, v.Z * f}
|
||
|
|
}
|
||
|
|
|
||
|
|
// ScaleI returns a vector scaled by an integer factor
|
||
|
|
func (v T) ScaleI(i int) T {
|
||
|
|
return v.Scaled(float32(i))
|
||
|
|
}
|
||
|
|
|
||
|
|
// Invert the vector components
|
||
|
|
func (v *T) Invert() {
|
||
|
|
v.X = -v.X
|
||
|
|
v.Y = -v.Y
|
||
|
|
v.Z = -v.Z
|
||
|
|
}
|
||
|
|
|
||
|
|
// Inverted returns an inverted vector
|
||
|
|
func (v *T) Inverted() T {
|
||
|
|
i := *v
|
||
|
|
i.Invert()
|
||
|
|
return i
|
||
|
|
}
|
||
|
|
|
||
|
|
// Floor each components of the vector
|
||
|
|
func (v T) Floor() T {
|
||
|
|
return T{math.Floor(v.X), math.Floor(v.Y), math.Floor(v.Z)}
|
||
|
|
}
|
||
|
|
|
||
|
|
// Ceil each component of the vector
|
||
|
|
func (v T) Ceil() T {
|
||
|
|
return T{math.Ceil(v.X), math.Ceil(v.Y), math.Ceil(v.Z)}
|
||
|
|
}
|
||
|
|
|
||
|
|
// Round each component of the vector
|
||
|
|
func (v T) Round() T {
|
||
|
|
return T{math.Round(v.X), math.Round(v.Y), math.Round(v.Z)}
|
||
|
|
}
|
||
|
|
|
||
|
|
// Add each element of the vector with the corresponding element of another vector
|
||
|
|
func (v T) Add(v2 T) T {
|
||
|
|
return T{
|
||
|
|
v.X + v2.X,
|
||
|
|
v.Y + v2.Y,
|
||
|
|
v.Z + v2.Z,
|
||
|
|
}
|
||
|
|
}
|
||
|
|
|
||
|
|
// Sub subtracts each element of the vector with the corresponding element of another vector
|
||
|
|
func (v T) Sub(v2 T) T {
|
||
|
|
return T{
|
||
|
|
v.X - v2.X,
|
||
|
|
v.Y - v2.Y,
|
||
|
|
v.Z - v2.Z,
|
||
|
|
}
|
||
|
|
}
|
||
|
|
|
||
|
|
// Mul multiplies each element of the vector with the corresponding element of another vector
|
||
|
|
func (v T) Mul(v2 T) T {
|
||
|
|
return T{
|
||
|
|
v.X * v2.X,
|
||
|
|
v.Y * v2.Y,
|
||
|
|
v.Z * v2.Z,
|
||
|
|
}
|
||
|
|
}
|
||
|
|
|
||
|
|
// XY returns a 2-component vector with the X, Y components of this vector
|
||
|
|
func (v T) XY() vec2.T {
|
||
|
|
return vec2.T{X: v.X, Y: v.Y}
|
||
|
|
}
|
||
|
|
|
||
|
|
// XZ returns a 2-component vector with the X, Z components of this vector
|
||
|
|
func (v T) XZ() vec2.T {
|
||
|
|
return vec2.T{X: v.X, Y: v.Z}
|
||
|
|
}
|
||
|
|
|
||
|
|
// YZ returns a 2-component vector with the Y, Z components of this vector
|
||
|
|
func (v T) YZ() vec2.T {
|
||
|
|
return vec2.T{X: v.Y, Y: v.Z}
|
||
|
|
}
|
||
|
|
|
||
|
|
// Div divides each element of the vector with the corresponding element of another vector
|
||
|
|
func (v T) Div(v2 T) T {
|
||
|
|
return T{v.X / v2.X, v.Y / v2.Y, v.Z / v2.Z}
|
||
|
|
}
|
||
|
|
|
||
|
|
// WithX returns a new vector with the X component set to a given value
|
||
|
|
func (v T) WithX(x float32) T {
|
||
|
|
return T{x, v.Y, v.Z}
|
||
|
|
}
|
||
|
|
|
||
|
|
// WithY returns a new vector with the Y component set to a given value
|
||
|
|
func (v T) WithY(y float32) T {
|
||
|
|
return T{v.X, y, v.Z}
|
||
|
|
}
|
||
|
|
|
||
|
|
// WithZ returns a new vector with the Z component set to a given value
|
||
|
|
func (v T) WithZ(z float32) T {
|
||
|
|
return T{v.X, v.Y, z}
|
||
|
|
}
|
||
|
|
|
||
|
|
func (v T) ApproxEqual(v2 T) bool {
|
||
|
|
epsilon := float32(0.0001)
|
||
|
|
return Distance(v, v2) < epsilon
|
||
|
|
}
|
||
|
|
|
||
|
|
func (v T) String() string {
|
||
|
|
return fmt.Sprintf("%.3f,%.3f,%.3f", v.X, v.Y, v.Z)
|
||
|
|
}
|