zengine-old/test/vulkanTest/src/lve_device.cpp
2024-02-18 21:33:25 +08:00

788 lines
26 KiB
C++

#include "lve_device.hpp"
// std headers
#include <cstring>
#include <iostream>
#include <set>
#include <unordered_set>
namespace lve {
// local callback functions
static VKAPI_ATTR VkBool32 VKAPI_CALL debugCallback(
VkDebugUtilsMessageSeverityFlagBitsEXT messageSeverity,
VkDebugUtilsMessageTypeFlagsEXT messageType,
const VkDebugUtilsMessengerCallbackDataEXT *pCallbackData,
void *pUserData) {
std::cerr << "validation layer: " << pCallbackData->pMessage << std::endl;
return VK_FALSE;
}
VkResult CreateDebugUtilsMessengerEXT(
VkInstance instance,
const VkDebugUtilsMessengerCreateInfoEXT *pCreateInfo,
const VkAllocationCallbacks *pAllocator,
VkDebugUtilsMessengerEXT *pDebugMessenger) {
auto func = (PFN_vkCreateDebugUtilsMessengerEXT)vkGetInstanceProcAddr(
instance,
"vkCreateDebugUtilsMessengerEXT");
if (func != nullptr) {
return func(instance, pCreateInfo, pAllocator, pDebugMessenger);
} else {
return VK_ERROR_EXTENSION_NOT_PRESENT;
}
}
void DestroyDebugUtilsMessengerEXT(
VkInstance instance,
VkDebugUtilsMessengerEXT debugMessenger,
const VkAllocationCallbacks *pAllocator) {
auto func = (PFN_vkDestroyDebugUtilsMessengerEXT)vkGetInstanceProcAddr(
instance,
"vkDestroyDebugUtilsMessengerEXT");
if (func != nullptr) {
func(instance, debugMessenger, pAllocator);
}
}
// class member functions
void LveDevice::init() {
createInstance();
setupDebugMessenger();
createSurface();
pickPhysicalDevice();
createLogicalDevice();
createCommandPool();
}
void LveDevice::cleanup() {
vkDestroyCommandPool(device_, commandPool, nullptr);
vkDestroyDevice(device_, nullptr);
if (enableValidationLayers) {
DestroyDebugUtilsMessengerEXT(instance, debugMessenger, nullptr);
}
vkDestroySurfaceKHR(instance, surface_, nullptr);
vkDestroyInstance(instance, nullptr);
}
void LveDevice::createInstance() {
if (enableValidationLayers && !checkValidationLayerSupport()) {
throw std::runtime_error("validation layers requested, but not available!");
}
VkApplicationInfo appInfo = {};
appInfo.sType = VK_STRUCTURE_TYPE_APPLICATION_INFO;
appInfo.pApplicationName = "Thineng App";
appInfo.applicationVersion = VK_MAKE_VERSION(1, 0, 0);
appInfo.pEngineName = "No Engine";
appInfo.engineVersion = VK_MAKE_VERSION(1, 0, 0);
appInfo.apiVersion = VK_API_VERSION_1_0;
VkInstanceCreateInfo createInfo = {};
createInfo.sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO;
createInfo.pApplicationInfo = &appInfo;
auto extensions = getRequiredExtensions();
createInfo.enabledExtensionCount = static_cast<uint32_t>(extensions.size());
createInfo.ppEnabledExtensionNames = extensions.data();
VkDebugUtilsMessengerCreateInfoEXT debugCreateInfo;
if (enableValidationLayers) {
createInfo.enabledLayerCount = static_cast<uint32_t>(validationLayers.size());
createInfo.ppEnabledLayerNames = validationLayers.data();
populateDebugMessengerCreateInfo(debugCreateInfo);
createInfo.pNext = (VkDebugUtilsMessengerCreateInfoEXT *)&debugCreateInfo;
} else {
createInfo.enabledLayerCount = 0;
createInfo.pNext = nullptr;
}
if (vkCreateInstance(&createInfo, nullptr, &instance) != VK_SUCCESS) {
throw std::runtime_error("failed to create instance!");
}
hasGflwRequiredInstanceExtensions();
}
void LveDevice::pickPhysicalDevice() {
uint32_t deviceCount = 0;
vkEnumeratePhysicalDevices(instance, &deviceCount, nullptr);
if (deviceCount == 0) {
throw std::runtime_error("failed to find GPUs with Vulkan support!");
}
std::cout << "Device count: " << deviceCount << std::endl;
std::vector<VkPhysicalDevice> devices(deviceCount);
vkEnumeratePhysicalDevices(instance, &deviceCount, devices.data());
for (const auto &device : devices) {
if (isDeviceSuitable(device)) {
physicalDevice = device;
break;
}
}
if (physicalDevice == VK_NULL_HANDLE) {
throw std::runtime_error("failed to find a suitable GPU!");
}
VkPhysicalDeviceProperties pProperties;
vkGetPhysicalDeviceProperties(physicalDevice, &pProperties);
std::cout << "physical device: " << pProperties.deviceName << std::endl;
}
void LveDevice::createLogicalDevice() {
QueueFamilyIndices indices = findQueueFamilies(physicalDevice);
std::vector<VkDeviceQueueCreateInfo> queueCreateInfos;
std::set<uint32_t> uniqueQueueFamilies = {indices.graphicsFamily, indices.presentFamily};
float queuePriority = 1.0f;
for (uint32_t queueFamily : uniqueQueueFamilies) {
VkDeviceQueueCreateInfo queueCreateInfo = {};
queueCreateInfo.sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO;
queueCreateInfo.queueFamilyIndex = queueFamily;
queueCreateInfo.queueCount = 1;
queueCreateInfo.pQueuePriorities = &queuePriority;
queueCreateInfos.push_back(queueCreateInfo);
}
VkPhysicalDeviceFeatures deviceFeatures = {};
deviceFeatures.samplerAnisotropy = VK_TRUE;
VkDeviceCreateInfo createInfo = {};
createInfo.sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO;
createInfo.queueCreateInfoCount = static_cast<uint32_t>(queueCreateInfos.size());
createInfo.pQueueCreateInfos = queueCreateInfos.data();
createInfo.pEnabledFeatures = &deviceFeatures;
createInfo.enabledExtensionCount = static_cast<uint32_t>(deviceExtensions.size());
createInfo.ppEnabledExtensionNames = deviceExtensions.data();
// not really necessary anymore because device specific validation layers
// have been deprecated
if (enableValidationLayers) {
createInfo.enabledLayerCount = static_cast<uint32_t>(validationLayers.size());
createInfo.ppEnabledLayerNames = validationLayers.data();
} else {
createInfo.enabledLayerCount = 0;
}
if (vkCreateDevice(physicalDevice, &createInfo, nullptr, &device_) != VK_SUCCESS) {
throw std::runtime_error("failed to create logical device!");
}
vkGetDeviceQueue(device_, indices.graphicsFamily, 0, &graphicsQueue_);
vkGetDeviceQueue(device_, indices.presentFamily, 0, &presentQueue_);
}
void LveDevice::createCommandPool() {
QueueFamilyIndices queueFamilyIndices = findPhysicalQueueFamilies();
VkCommandPoolCreateInfo poolInfo = {};
poolInfo.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO;
poolInfo.queueFamilyIndex = queueFamilyIndices.graphicsFamily;
poolInfo.flags =
VK_COMMAND_POOL_CREATE_TRANSIENT_BIT | VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT;
if (vkCreateCommandPool(device_, &poolInfo, nullptr, &commandPool) != VK_SUCCESS) {
throw std::runtime_error("failed to create command pool!");
}
}
void LveDevice::createSurface() { window.createWindowSurface(instance, &surface_); }
bool LveDevice::isDeviceSuitable(VkPhysicalDevice device) {
QueueFamilyIndices indices = findQueueFamilies(device);
bool extensionsSupported = checkDeviceExtensionSupport(device);
bool swapChainAdequate = false;
if (extensionsSupported) {
SwapChainSupportDetails swapChainSupport = querySwapChainSupport(device);
swapChainAdequate = !swapChainSupport.formats.empty() && !swapChainSupport.presentModes.empty();
}
VkPhysicalDeviceFeatures supportedFeatures;
vkGetPhysicalDeviceFeatures(device, &supportedFeatures);
return indices.isComplete() && extensionsSupported && swapChainAdequate &&
supportedFeatures.samplerAnisotropy;
}
void LveDevice::populateDebugMessengerCreateInfo(VkDebugUtilsMessengerCreateInfoEXT &createInfo) {
createInfo = {};
createInfo.sType = VK_STRUCTURE_TYPE_DEBUG_UTILS_MESSENGER_CREATE_INFO_EXT;
createInfo.messageSeverity = VK_DEBUG_UTILS_MESSAGE_SEVERITY_VERBOSE_BIT_EXT |
VK_DEBUG_UTILS_MESSAGE_SEVERITY_WARNING_BIT_EXT |
VK_DEBUG_UTILS_MESSAGE_SEVERITY_ERROR_BIT_EXT;
createInfo.messageType = VK_DEBUG_UTILS_MESSAGE_TYPE_GENERAL_BIT_EXT |
VK_DEBUG_UTILS_MESSAGE_TYPE_VALIDATION_BIT_EXT |
VK_DEBUG_UTILS_MESSAGE_TYPE_PERFORMANCE_BIT_EXT;
createInfo.pfnUserCallback = debugCallback;
createInfo.pUserData = nullptr; // Optional
}
void LveDevice::setupDebugMessenger() {
if (!enableValidationLayers) return;
VkDebugUtilsMessengerCreateInfoEXT createInfo;
populateDebugMessengerCreateInfo(createInfo);
if (CreateDebugUtilsMessengerEXT(instance, &createInfo, nullptr, &debugMessenger) != VK_SUCCESS) {
throw std::runtime_error("failed to set up debug messenger!");
}
}
bool LveDevice::checkValidationLayerSupport() {
uint32_t layerCount;
vkEnumerateInstanceLayerProperties(&layerCount, nullptr);
std::vector<VkLayerProperties> availableLayers(layerCount);
vkEnumerateInstanceLayerProperties(&layerCount, availableLayers.data());
for (const char *layerName : validationLayers) {
bool layerFound = false;
for (const auto &layerProperties : availableLayers) {
if (strcmp(layerName, layerProperties.layerName) == 0) {
layerFound = true;
break;
}
}
if (!layerFound) {
return false;
}
}
return true;
}
std::vector<const char *> LveDevice::getRequiredExtensions() {
uint32_t glfwExtensionCount = 0;
const char **glfwExtensions;
glfwExtensions = glfwGetRequiredInstanceExtensions(&glfwExtensionCount);
std::vector<const char *> extensions(glfwExtensions, glfwExtensions + glfwExtensionCount);
if (enableValidationLayers) {
extensions.push_back(VK_EXT_DEBUG_UTILS_EXTENSION_NAME);
}
return extensions;
}
void LveDevice::hasGflwRequiredInstanceExtensions() {
uint32_t extensionCount = 0;
vkEnumerateInstanceExtensionProperties(nullptr, &extensionCount, nullptr);
std::vector<VkExtensionProperties> extensions(extensionCount);
vkEnumerateInstanceExtensionProperties(nullptr, &extensionCount, extensions.data());
std::cout << "available extensions:" << std::endl;
std::unordered_set<std::string> available;
for (const auto &extension : extensions) {
std::cout << "\t" << extension.extensionName << std::endl;
available.insert(extension.extensionName);
}
std::cout << "required extensions:" << std::endl;
auto requiredExtensions = getRequiredExtensions();
for (const auto &required : requiredExtensions) {
std::cout << "\t" << required << std::endl;
if (available.find(required) == available.end()) {
throw std::runtime_error("Missing required glfw extension");
}
}
}
bool LveDevice::checkDeviceExtensionSupport(VkPhysicalDevice device) {
uint32_t extensionCount;
vkEnumerateDeviceExtensionProperties(device, nullptr, &extensionCount, nullptr);
std::vector<VkExtensionProperties> availableExtensions(extensionCount);
vkEnumerateDeviceExtensionProperties(
device,
nullptr,
&extensionCount,
availableExtensions.data());
std::set<std::string> requiredExtensions(deviceExtensions.begin(), deviceExtensions.end());
for (const auto &extension : availableExtensions) {
requiredExtensions.erase(extension.extensionName);
}
return requiredExtensions.empty();
}
// challenge: use queue with VK_QUEUE_TRANSFER_BIT for staging transfer
// https://vulkan-tutorial.com/Vertex_buffers/Staging_buffer
QueueFamilyIndices LveDevice::findQueueFamilies(VkPhysicalDevice device) {
QueueFamilyIndices indices;
uint32_t queueFamilyCount = 0;
vkGetPhysicalDeviceQueueFamilyProperties(device, &queueFamilyCount, nullptr);
std::vector<VkQueueFamilyProperties> queueFamilies(queueFamilyCount);
vkGetPhysicalDeviceQueueFamilyProperties(device, &queueFamilyCount, queueFamilies.data());
int i = 0;
for (const auto &queueFamily : queueFamilies) {
if (queueFamily.queueCount > 0 && queueFamily.queueFlags & VK_QUEUE_GRAPHICS_BIT) {
indices.graphicsFamily = i;
indices.graphicsFamilyHasValue = true;
}
VkBool32 presentSupport = false;
vkGetPhysicalDeviceSurfaceSupportKHR(device, i, surface_, &presentSupport);
if (queueFamily.queueCount > 0 && presentSupport) {
indices.presentFamily = i;
indices.presentFamilyHasValue = true;
}
if (indices.isComplete()) {
break;
}
i++;
}
return indices;
}
SwapChainSupportDetails LveDevice::querySwapChainSupport(VkPhysicalDevice device) {
SwapChainSupportDetails details;
vkGetPhysicalDeviceSurfaceCapabilitiesKHR(device, surface_, &details.capabilities);
uint32_t formatCount;
vkGetPhysicalDeviceSurfaceFormatsKHR(device, surface_, &formatCount, nullptr);
if (formatCount != 0) {
details.formats.resize(formatCount);
vkGetPhysicalDeviceSurfaceFormatsKHR(device, surface_, &formatCount, details.formats.data());
}
uint32_t presentModeCount;
vkGetPhysicalDeviceSurfacePresentModesKHR(device, surface_, &presentModeCount, nullptr);
if (presentModeCount != 0) {
details.presentModes.resize(presentModeCount);
vkGetPhysicalDeviceSurfacePresentModesKHR(
device,
surface_,
&presentModeCount,
details.presentModes.data());
}
return details;
}
VkFormat LveDevice::findSupportedFormat(
const std::vector<VkFormat> &candidates, VkImageTiling tiling, VkFormatFeatureFlags features) {
for (VkFormat format : candidates) {
VkFormatProperties props;
vkGetPhysicalDeviceFormatProperties(physicalDevice, format, &props);
if (tiling == VK_IMAGE_TILING_LINEAR && (props.linearTilingFeatures & features) == features) {
return format;
} else if (
tiling == VK_IMAGE_TILING_OPTIMAL && (props.optimalTilingFeatures & features) == features) {
return format;
}
}
throw std::runtime_error("failed to find supported format!");
}
uint32_t LveDevice::findMemoryType(uint32_t typeFilter, VkMemoryPropertyFlags properties) {
VkPhysicalDeviceMemoryProperties memProperties;
vkGetPhysicalDeviceMemoryProperties(physicalDevice, &memProperties);
for (uint32_t i = 0; i < memProperties.memoryTypeCount; i++) {
if ((typeFilter & (1 << i)) &&
(memProperties.memoryTypes[i].propertyFlags & properties) == properties) {
return i;
}
}
throw std::runtime_error("failed to find suitable memory type!");
}
void LveDevice::createBuffer(
VkDeviceSize size,
VkBufferUsageFlags usage,
VkMemoryPropertyFlags properties,
VkBuffer &buffer,
VkDeviceMemory &bufferMemory) {
VkBufferCreateInfo bufferInfo{};
bufferInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
bufferInfo.size = size;
bufferInfo.usage = usage;
bufferInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
if (vkCreateBuffer(device_, &bufferInfo, nullptr, &buffer) != VK_SUCCESS) {
throw std::runtime_error("failed to create vertex buffer!");
}
VkMemoryRequirements memRequirements;
vkGetBufferMemoryRequirements(device_, buffer, &memRequirements);
VkMemoryAllocateInfo allocInfo{};
allocInfo.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
allocInfo.allocationSize = memRequirements.size;
allocInfo.memoryTypeIndex = findMemoryType(memRequirements.memoryTypeBits, properties);
// TODO there is a maximum number of memory allocations
// maxMemoryAllocationCount for a physical device. Should create a custom
// allocator that batches together a large number of objects at once. See
// https://github.com/GPUOpen-LibrariesAndSDKs/VulkanMemoryAllocator
if (vkAllocateMemory(device_, &allocInfo, nullptr, &bufferMemory) != VK_SUCCESS) {
throw std::runtime_error("failed to allocate vertex buffer memory!");
}
vkBindBufferMemory(device_, buffer, bufferMemory, 0);
}
VkCommandBuffer LveDevice::beginSingleTimeCommands() {
// You may wish to create a separate command pool for these kinds of
// short-lived buffers,
// because the implementation may be able to apply memory allocation
// optimizations. You should use the VK_COMMAND_POOL_CREATE_TRANSIENT_BIT
// flag during command pool generation in that case.
VkCommandBufferAllocateInfo allocInfo{};
allocInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO;
allocInfo.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY;
allocInfo.commandPool = commandPool;
allocInfo.commandBufferCount = 1;
VkCommandBuffer commandBuffer;
vkAllocateCommandBuffers(device_, &allocInfo, &commandBuffer);
VkCommandBufferBeginInfo beginInfo{};
beginInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
beginInfo.flags = VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT;
vkBeginCommandBuffer(commandBuffer, &beginInfo);
return commandBuffer;
}
void LveDevice::endSingleTimeCommands(VkCommandBuffer commandBuffer) {
vkEndCommandBuffer(commandBuffer);
VkSubmitInfo submitInfo{};
submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &commandBuffer;
vkQueueSubmit(graphicsQueue_, 1, &submitInfo, VK_NULL_HANDLE);
vkQueueWaitIdle(graphicsQueue_);
vkFreeCommandBuffers(device_, commandPool, 1, &commandBuffer);
}
void LveDevice::copyBuffer(VkBuffer srcBuffer, VkBuffer dstBuffer, VkDeviceSize size) {
VkCommandBuffer commandBuffer = beginSingleTimeCommands();
VkBufferCopy copyRegion{};
copyRegion.srcOffset = 0; // Optional
copyRegion.dstOffset = 0; // Optional
copyRegion.size = size;
vkCmdCopyBuffer(commandBuffer, srcBuffer, dstBuffer, 1, &copyRegion);
endSingleTimeCommands(commandBuffer);
}
void LveDevice::copyBufferToImage(
VkBuffer buffer, VkImage image, uint32_t width, uint32_t height, uint32_t layerCount) {
VkCommandBuffer commandBuffer = beginSingleTimeCommands();
VkBufferImageCopy region{};
region.bufferOffset = 0;
region.bufferRowLength = 0;
region.bufferImageHeight = 0;
region.imageSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
region.imageSubresource.mipLevel = 0;
region.imageSubresource.baseArrayLayer = 0;
region.imageSubresource.layerCount = layerCount;
region.imageOffset = {0, 0, 0};
region.imageExtent = {width, height, 1};
vkCmdCopyBufferToImage(
commandBuffer,
buffer,
image,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
1,
&region);
endSingleTimeCommands(commandBuffer);
}
bool hasStencilComponent(VkFormat format) {
return format == VK_FORMAT_D32_SFLOAT_S8_UINT || format == VK_FORMAT_D24_UNORM_S8_UINT;
}
void LveDevice::transitionImageLayout(
VkImage image,
VkFormat format,
VkImageLayout oldLayout,
VkImageLayout newLayout,
uint32_t mipLevels,
uint32_t layerCount) {
// uses an image memory barrier transition image layouts and transfer queue
// family ownership when VK_SHARING_MODE_EXCLUSIVE is used. There is an
// equivalent buffer memory barrier to do this for buffers
VkCommandBuffer commandBuffer = beginSingleTimeCommands();
VkImageMemoryBarrier barrier{};
barrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
barrier.oldLayout = oldLayout;
barrier.newLayout = newLayout;
barrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
barrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
barrier.image = image;
barrier.subresourceRange.baseMipLevel = 0;
barrier.subresourceRange.levelCount = mipLevels;
barrier.subresourceRange.baseArrayLayer = 0;
barrier.subresourceRange.layerCount = layerCount;
if (newLayout == VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL) {
barrier.subresourceRange.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT;
if (hasStencilComponent(format)) {
barrier.subresourceRange.aspectMask |= VK_IMAGE_ASPECT_STENCIL_BIT;
}
} else {
barrier.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
}
VkPipelineStageFlags sourceStage;
VkPipelineStageFlags destinationStage;
if (oldLayout == VK_IMAGE_LAYOUT_UNDEFINED && newLayout == VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL) {
barrier.srcAccessMask = 0;
barrier.dstAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
sourceStage = VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT;
destinationStage = VK_PIPELINE_STAGE_TRANSFER_BIT;
} else if (
oldLayout == VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL &&
newLayout == VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL) {
barrier.srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
barrier.dstAccessMask = VK_ACCESS_SHADER_READ_BIT;
sourceStage = VK_PIPELINE_STAGE_TRANSFER_BIT;
destinationStage = VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT;
} else if (
oldLayout == VK_IMAGE_LAYOUT_UNDEFINED &&
newLayout == VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL) {
barrier.srcAccessMask = 0;
barrier.dstAccessMask =
VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT | VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT;
sourceStage = VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT;
destinationStage = VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT;
} else {
throw std::invalid_argument("unsupported layout transition!");
}
vkCmdPipelineBarrier(
commandBuffer,
sourceStage,
destinationStage,
0,
0,
nullptr,
0,
nullptr,
1,
&barrier);
endSingleTimeCommands(commandBuffer);
}
void LveDevice::createImage(
uint32_t width,
uint32_t height,
uint32_t mipLevels,
VkFormat format,
VkImageTiling tiling,
VkImageUsageFlags usage,
VkMemoryPropertyFlags properties,
VkImage &image,
VkDeviceMemory &imageMemory,
VkImageCreateFlags flags,
uint32_t arrayLayers) {
VkImageCreateInfo imageInfo{};
imageInfo.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO;
imageInfo.imageType = VK_IMAGE_TYPE_2D;
imageInfo.extent.width = width;
imageInfo.extent.height = height;
imageInfo.extent.depth = 1;
imageInfo.mipLevels = mipLevels;
imageInfo.arrayLayers = arrayLayers;
imageInfo.format = format;
imageInfo.tiling = tiling;
imageInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
imageInfo.usage = usage;
imageInfo.samples = VK_SAMPLE_COUNT_1_BIT;
imageInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
imageInfo.flags = flags;
if (vkCreateImage(device_, &imageInfo, nullptr, &image) != VK_SUCCESS) {
throw std::runtime_error("failed to create image!");
}
VkMemoryRequirements memRequirements;
vkGetImageMemoryRequirements(device_, image, &memRequirements);
VkMemoryAllocateInfo allocInfo{};
allocInfo.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
allocInfo.allocationSize = memRequirements.size;
allocInfo.memoryTypeIndex = findMemoryType(memRequirements.memoryTypeBits, properties);
if (vkAllocateMemory(device_, &allocInfo, nullptr, &imageMemory) != VK_SUCCESS) {
throw std::runtime_error("failed to allocate image memory!");
}
vkBindImageMemory(device_, image, imageMemory, 0);
}
VkImageView LveDevice::createImageView(
VkImage image,
VkFormat format,
VkImageAspectFlags aspectFlags,
uint32_t mipLevels,
VkImageViewType viewType) {
VkImageViewCreateInfo viewInfo{};
viewInfo.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
viewInfo.image = image;
viewInfo.viewType = viewType;
viewInfo.format = format;
viewInfo.subresourceRange.aspectMask = aspectFlags;
viewInfo.subresourceRange.baseMipLevel = 0;
viewInfo.subresourceRange.levelCount = mipLevels;
viewInfo.subresourceRange.baseArrayLayer = 0;
viewInfo.subresourceRange.layerCount = viewType == VK_IMAGE_VIEW_TYPE_CUBE ? 6 : 1;
VkImageView imageView;
if (vkCreateImageView(device_, &viewInfo, nullptr, &imageView) != VK_SUCCESS) {
throw std::runtime_error("failed to create texture image view!");
}
return imageView;
}
void LveDevice::generateMipmaps(
VkImage image, VkFormat imageFormat, int32_t texWidth, int32_t texHeight, uint32_t mipLevels) {
VkCommandBuffer commandBuffer = beginSingleTimeCommands();
// Check if image format supports linear blitting
VkFormatProperties formatProperties;
vkGetPhysicalDeviceFormatProperties(physicalDevice, imageFormat, &formatProperties);
if (!(formatProperties.optimalTilingFeatures &
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT)) {
throw std::runtime_error("texture image format does not support linear blitting!");
}
VkImageMemoryBarrier barrier{};
barrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
barrier.image = image;
barrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
barrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
barrier.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
barrier.subresourceRange.baseArrayLayer = 0;
barrier.subresourceRange.layerCount = 1;
barrier.subresourceRange.levelCount = 1;
int32_t mipWidth = texWidth;
int32_t mipHeight = texHeight;
for (uint32_t i = 1; i < mipLevels; i++) {
barrier.subresourceRange.baseMipLevel = i - 1;
barrier.oldLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
barrier.newLayout = VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL;
barrier.srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
barrier.dstAccessMask = VK_ACCESS_TRANSFER_READ_BIT;
vkCmdPipelineBarrier(
commandBuffer,
VK_PIPELINE_STAGE_TRANSFER_BIT,
VK_PIPELINE_STAGE_TRANSFER_BIT,
0,
0,
nullptr,
0,
nullptr,
1,
&barrier);
VkImageBlit blit{};
blit.srcOffsets[0] = {0, 0, 0};
blit.srcOffsets[1] = {mipWidth, mipHeight, 1};
blit.srcSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
blit.srcSubresource.mipLevel = i - 1;
blit.srcSubresource.baseArrayLayer = 0;
blit.srcSubresource.layerCount = 1;
blit.dstOffsets[0] = {0, 0, 0};
blit.dstOffsets[1] = {mipWidth > 1 ? mipWidth / 2 : 1, mipHeight > 1 ? mipHeight / 2 : 1, 1};
blit.dstSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
blit.dstSubresource.mipLevel = i;
blit.dstSubresource.baseArrayLayer = 0;
blit.dstSubresource.layerCount = 1;
vkCmdBlitImage(
commandBuffer,
image,
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
image,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
1,
&blit,
VK_FILTER_LINEAR);
barrier.oldLayout = VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL;
barrier.newLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
barrier.srcAccessMask = VK_ACCESS_TRANSFER_READ_BIT;
barrier.dstAccessMask = VK_ACCESS_SHADER_READ_BIT;
vkCmdPipelineBarrier(
commandBuffer,
VK_PIPELINE_STAGE_TRANSFER_BIT,
VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT,
0,
0,
nullptr,
0,
nullptr,
1,
&barrier);
if (mipWidth > 1) mipWidth /= 2;
if (mipHeight > 1) mipHeight /= 2;
}
barrier.subresourceRange.baseMipLevel = mipLevels - 1;
barrier.oldLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
barrier.newLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
barrier.srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
barrier.dstAccessMask = VK_ACCESS_SHADER_READ_BIT;
vkCmdPipelineBarrier(
commandBuffer,
VK_PIPELINE_STAGE_TRANSFER_BIT,
VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT,
0,
0,
nullptr,
0,
nullptr,
1,
&barrier);
endSingleTimeCommands(commandBuffer);
}
} // namespace lve