#include "lve_device.hpp" // std headers #include #include #include #include namespace lve { // local callback functions static VKAPI_ATTR VkBool32 VKAPI_CALL debugCallback( VkDebugUtilsMessageSeverityFlagBitsEXT messageSeverity, VkDebugUtilsMessageTypeFlagsEXT messageType, const VkDebugUtilsMessengerCallbackDataEXT *pCallbackData, void *pUserData) { std::cerr << "validation layer: " << pCallbackData->pMessage << std::endl; return VK_FALSE; } VkResult CreateDebugUtilsMessengerEXT( VkInstance instance, const VkDebugUtilsMessengerCreateInfoEXT *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkDebugUtilsMessengerEXT *pDebugMessenger) { auto func = (PFN_vkCreateDebugUtilsMessengerEXT)vkGetInstanceProcAddr( instance, "vkCreateDebugUtilsMessengerEXT"); if (func != nullptr) { return func(instance, pCreateInfo, pAllocator, pDebugMessenger); } else { return VK_ERROR_EXTENSION_NOT_PRESENT; } } void DestroyDebugUtilsMessengerEXT( VkInstance instance, VkDebugUtilsMessengerEXT debugMessenger, const VkAllocationCallbacks *pAllocator) { auto func = (PFN_vkDestroyDebugUtilsMessengerEXT)vkGetInstanceProcAddr( instance, "vkDestroyDebugUtilsMessengerEXT"); if (func != nullptr) { func(instance, debugMessenger, pAllocator); } } // class member functions void LveDevice::init() { createInstance(); setupDebugMessenger(); createSurface(); pickPhysicalDevice(); createLogicalDevice(); createCommandPool(); } void LveDevice::cleanup() { vkDestroyCommandPool(device_, commandPool, nullptr); vkDestroyDevice(device_, nullptr); if (enableValidationLayers) { DestroyDebugUtilsMessengerEXT(instance, debugMessenger, nullptr); } vkDestroySurfaceKHR(instance, surface_, nullptr); vkDestroyInstance(instance, nullptr); } void LveDevice::createInstance() { if (enableValidationLayers && !checkValidationLayerSupport()) { throw std::runtime_error("validation layers requested, but not available!"); } VkApplicationInfo appInfo = {}; appInfo.sType = VK_STRUCTURE_TYPE_APPLICATION_INFO; appInfo.pApplicationName = "Thineng App"; appInfo.applicationVersion = VK_MAKE_VERSION(1, 0, 0); appInfo.pEngineName = "No Engine"; appInfo.engineVersion = VK_MAKE_VERSION(1, 0, 0); appInfo.apiVersion = VK_API_VERSION_1_0; VkInstanceCreateInfo createInfo = {}; createInfo.sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO; createInfo.pApplicationInfo = &appInfo; auto extensions = getRequiredExtensions(); createInfo.enabledExtensionCount = static_cast(extensions.size()); createInfo.ppEnabledExtensionNames = extensions.data(); VkDebugUtilsMessengerCreateInfoEXT debugCreateInfo; if (enableValidationLayers) { createInfo.enabledLayerCount = static_cast(validationLayers.size()); createInfo.ppEnabledLayerNames = validationLayers.data(); populateDebugMessengerCreateInfo(debugCreateInfo); createInfo.pNext = (VkDebugUtilsMessengerCreateInfoEXT *)&debugCreateInfo; } else { createInfo.enabledLayerCount = 0; createInfo.pNext = nullptr; } if (vkCreateInstance(&createInfo, nullptr, &instance) != VK_SUCCESS) { throw std::runtime_error("failed to create instance!"); } hasGflwRequiredInstanceExtensions(); } void LveDevice::pickPhysicalDevice() { uint32_t deviceCount = 0; vkEnumeratePhysicalDevices(instance, &deviceCount, nullptr); if (deviceCount == 0) { throw std::runtime_error("failed to find GPUs with Vulkan support!"); } std::cout << "Device count: " << deviceCount << std::endl; std::vector devices(deviceCount); vkEnumeratePhysicalDevices(instance, &deviceCount, devices.data()); for (const auto &device : devices) { if (isDeviceSuitable(device)) { physicalDevice = device; break; } } if (physicalDevice == VK_NULL_HANDLE) { throw std::runtime_error("failed to find a suitable GPU!"); } VkPhysicalDeviceProperties pProperties; vkGetPhysicalDeviceProperties(physicalDevice, &pProperties); std::cout << "physical device: " << pProperties.deviceName << std::endl; } void LveDevice::createLogicalDevice() { QueueFamilyIndices indices = findQueueFamilies(physicalDevice); std::vector queueCreateInfos; std::set uniqueQueueFamilies = {indices.graphicsFamily, indices.presentFamily}; float queuePriority = 1.0f; for (uint32_t queueFamily : uniqueQueueFamilies) { VkDeviceQueueCreateInfo queueCreateInfo = {}; queueCreateInfo.sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO; queueCreateInfo.queueFamilyIndex = queueFamily; queueCreateInfo.queueCount = 1; queueCreateInfo.pQueuePriorities = &queuePriority; queueCreateInfos.push_back(queueCreateInfo); } VkPhysicalDeviceFeatures deviceFeatures = {}; deviceFeatures.samplerAnisotropy = VK_TRUE; VkDeviceCreateInfo createInfo = {}; createInfo.sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO; createInfo.queueCreateInfoCount = static_cast(queueCreateInfos.size()); createInfo.pQueueCreateInfos = queueCreateInfos.data(); createInfo.pEnabledFeatures = &deviceFeatures; createInfo.enabledExtensionCount = static_cast(deviceExtensions.size()); createInfo.ppEnabledExtensionNames = deviceExtensions.data(); // not really necessary anymore because device specific validation layers // have been deprecated if (enableValidationLayers) { createInfo.enabledLayerCount = static_cast(validationLayers.size()); createInfo.ppEnabledLayerNames = validationLayers.data(); } else { createInfo.enabledLayerCount = 0; } if (vkCreateDevice(physicalDevice, &createInfo, nullptr, &device_) != VK_SUCCESS) { throw std::runtime_error("failed to create logical device!"); } vkGetDeviceQueue(device_, indices.graphicsFamily, 0, &graphicsQueue_); vkGetDeviceQueue(device_, indices.presentFamily, 0, &presentQueue_); } void LveDevice::createCommandPool() { QueueFamilyIndices queueFamilyIndices = findPhysicalQueueFamilies(); VkCommandPoolCreateInfo poolInfo = {}; poolInfo.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO; poolInfo.queueFamilyIndex = queueFamilyIndices.graphicsFamily; poolInfo.flags = VK_COMMAND_POOL_CREATE_TRANSIENT_BIT | VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT; if (vkCreateCommandPool(device_, &poolInfo, nullptr, &commandPool) != VK_SUCCESS) { throw std::runtime_error("failed to create command pool!"); } } void LveDevice::createSurface() { window.createWindowSurface(instance, &surface_); } bool LveDevice::isDeviceSuitable(VkPhysicalDevice device) { QueueFamilyIndices indices = findQueueFamilies(device); bool extensionsSupported = checkDeviceExtensionSupport(device); bool swapChainAdequate = false; if (extensionsSupported) { SwapChainSupportDetails swapChainSupport = querySwapChainSupport(device); swapChainAdequate = !swapChainSupport.formats.empty() && !swapChainSupport.presentModes.empty(); } VkPhysicalDeviceFeatures supportedFeatures; vkGetPhysicalDeviceFeatures(device, &supportedFeatures); return indices.isComplete() && extensionsSupported && swapChainAdequate && supportedFeatures.samplerAnisotropy; } void LveDevice::populateDebugMessengerCreateInfo(VkDebugUtilsMessengerCreateInfoEXT &createInfo) { createInfo = {}; createInfo.sType = VK_STRUCTURE_TYPE_DEBUG_UTILS_MESSENGER_CREATE_INFO_EXT; createInfo.messageSeverity = VK_DEBUG_UTILS_MESSAGE_SEVERITY_VERBOSE_BIT_EXT | VK_DEBUG_UTILS_MESSAGE_SEVERITY_WARNING_BIT_EXT | VK_DEBUG_UTILS_MESSAGE_SEVERITY_ERROR_BIT_EXT; createInfo.messageType = VK_DEBUG_UTILS_MESSAGE_TYPE_GENERAL_BIT_EXT | VK_DEBUG_UTILS_MESSAGE_TYPE_VALIDATION_BIT_EXT | VK_DEBUG_UTILS_MESSAGE_TYPE_PERFORMANCE_BIT_EXT; createInfo.pfnUserCallback = debugCallback; createInfo.pUserData = nullptr; // Optional } void LveDevice::setupDebugMessenger() { if (!enableValidationLayers) return; VkDebugUtilsMessengerCreateInfoEXT createInfo; populateDebugMessengerCreateInfo(createInfo); if (CreateDebugUtilsMessengerEXT(instance, &createInfo, nullptr, &debugMessenger) != VK_SUCCESS) { throw std::runtime_error("failed to set up debug messenger!"); } } bool LveDevice::checkValidationLayerSupport() { uint32_t layerCount; vkEnumerateInstanceLayerProperties(&layerCount, nullptr); std::vector availableLayers(layerCount); vkEnumerateInstanceLayerProperties(&layerCount, availableLayers.data()); for (const char *layerName : validationLayers) { bool layerFound = false; for (const auto &layerProperties : availableLayers) { if (strcmp(layerName, layerProperties.layerName) == 0) { layerFound = true; break; } } if (!layerFound) { return false; } } return true; } std::vector LveDevice::getRequiredExtensions() { uint32_t glfwExtensionCount = 0; const char **glfwExtensions; glfwExtensions = glfwGetRequiredInstanceExtensions(&glfwExtensionCount); std::vector extensions(glfwExtensions, glfwExtensions + glfwExtensionCount); if (enableValidationLayers) { extensions.push_back(VK_EXT_DEBUG_UTILS_EXTENSION_NAME); } return extensions; } void LveDevice::hasGflwRequiredInstanceExtensions() { uint32_t extensionCount = 0; vkEnumerateInstanceExtensionProperties(nullptr, &extensionCount, nullptr); std::vector extensions(extensionCount); vkEnumerateInstanceExtensionProperties(nullptr, &extensionCount, extensions.data()); std::cout << "available extensions:" << std::endl; std::unordered_set available; for (const auto &extension : extensions) { std::cout << "\t" << extension.extensionName << std::endl; available.insert(extension.extensionName); } std::cout << "required extensions:" << std::endl; auto requiredExtensions = getRequiredExtensions(); for (const auto &required : requiredExtensions) { std::cout << "\t" << required << std::endl; if (available.find(required) == available.end()) { throw std::runtime_error("Missing required glfw extension"); } } } bool LveDevice::checkDeviceExtensionSupport(VkPhysicalDevice device) { uint32_t extensionCount; vkEnumerateDeviceExtensionProperties(device, nullptr, &extensionCount, nullptr); std::vector availableExtensions(extensionCount); vkEnumerateDeviceExtensionProperties( device, nullptr, &extensionCount, availableExtensions.data()); std::set requiredExtensions(deviceExtensions.begin(), deviceExtensions.end()); for (const auto &extension : availableExtensions) { requiredExtensions.erase(extension.extensionName); } return requiredExtensions.empty(); } // challenge: use queue with VK_QUEUE_TRANSFER_BIT for staging transfer // https://vulkan-tutorial.com/Vertex_buffers/Staging_buffer QueueFamilyIndices LveDevice::findQueueFamilies(VkPhysicalDevice device) { QueueFamilyIndices indices; uint32_t queueFamilyCount = 0; vkGetPhysicalDeviceQueueFamilyProperties(device, &queueFamilyCount, nullptr); std::vector queueFamilies(queueFamilyCount); vkGetPhysicalDeviceQueueFamilyProperties(device, &queueFamilyCount, queueFamilies.data()); int i = 0; for (const auto &queueFamily : queueFamilies) { if (queueFamily.queueCount > 0 && queueFamily.queueFlags & VK_QUEUE_GRAPHICS_BIT) { indices.graphicsFamily = i; indices.graphicsFamilyHasValue = true; } VkBool32 presentSupport = false; vkGetPhysicalDeviceSurfaceSupportKHR(device, i, surface_, &presentSupport); if (queueFamily.queueCount > 0 && presentSupport) { indices.presentFamily = i; indices.presentFamilyHasValue = true; } if (indices.isComplete()) { break; } i++; } return indices; } SwapChainSupportDetails LveDevice::querySwapChainSupport(VkPhysicalDevice device) { SwapChainSupportDetails details; vkGetPhysicalDeviceSurfaceCapabilitiesKHR(device, surface_, &details.capabilities); uint32_t formatCount; vkGetPhysicalDeviceSurfaceFormatsKHR(device, surface_, &formatCount, nullptr); if (formatCount != 0) { details.formats.resize(formatCount); vkGetPhysicalDeviceSurfaceFormatsKHR(device, surface_, &formatCount, details.formats.data()); } uint32_t presentModeCount; vkGetPhysicalDeviceSurfacePresentModesKHR(device, surface_, &presentModeCount, nullptr); if (presentModeCount != 0) { details.presentModes.resize(presentModeCount); vkGetPhysicalDeviceSurfacePresentModesKHR( device, surface_, &presentModeCount, details.presentModes.data()); } return details; } VkFormat LveDevice::findSupportedFormat( const std::vector &candidates, VkImageTiling tiling, VkFormatFeatureFlags features) { for (VkFormat format : candidates) { VkFormatProperties props; vkGetPhysicalDeviceFormatProperties(physicalDevice, format, &props); if (tiling == VK_IMAGE_TILING_LINEAR && (props.linearTilingFeatures & features) == features) { return format; } else if ( tiling == VK_IMAGE_TILING_OPTIMAL && (props.optimalTilingFeatures & features) == features) { return format; } } throw std::runtime_error("failed to find supported format!"); } uint32_t LveDevice::findMemoryType(uint32_t typeFilter, VkMemoryPropertyFlags properties) { VkPhysicalDeviceMemoryProperties memProperties; vkGetPhysicalDeviceMemoryProperties(physicalDevice, &memProperties); for (uint32_t i = 0; i < memProperties.memoryTypeCount; i++) { if ((typeFilter & (1 << i)) && (memProperties.memoryTypes[i].propertyFlags & properties) == properties) { return i; } } throw std::runtime_error("failed to find suitable memory type!"); } void LveDevice::createBuffer( VkDeviceSize size, VkBufferUsageFlags usage, VkMemoryPropertyFlags properties, VkBuffer &buffer, VkDeviceMemory &bufferMemory) { VkBufferCreateInfo bufferInfo{}; bufferInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO; bufferInfo.size = size; bufferInfo.usage = usage; bufferInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE; if (vkCreateBuffer(device_, &bufferInfo, nullptr, &buffer) != VK_SUCCESS) { throw std::runtime_error("failed to create vertex buffer!"); } VkMemoryRequirements memRequirements; vkGetBufferMemoryRequirements(device_, buffer, &memRequirements); VkMemoryAllocateInfo allocInfo{}; allocInfo.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO; allocInfo.allocationSize = memRequirements.size; allocInfo.memoryTypeIndex = findMemoryType(memRequirements.memoryTypeBits, properties); // TODO there is a maximum number of memory allocations // maxMemoryAllocationCount for a physical device. Should create a custom // allocator that batches together a large number of objects at once. See // https://github.com/GPUOpen-LibrariesAndSDKs/VulkanMemoryAllocator if (vkAllocateMemory(device_, &allocInfo, nullptr, &bufferMemory) != VK_SUCCESS) { throw std::runtime_error("failed to allocate vertex buffer memory!"); } vkBindBufferMemory(device_, buffer, bufferMemory, 0); } VkCommandBuffer LveDevice::beginSingleTimeCommands() { // You may wish to create a separate command pool for these kinds of // short-lived buffers, // because the implementation may be able to apply memory allocation // optimizations. You should use the VK_COMMAND_POOL_CREATE_TRANSIENT_BIT // flag during command pool generation in that case. VkCommandBufferAllocateInfo allocInfo{}; allocInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO; allocInfo.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY; allocInfo.commandPool = commandPool; allocInfo.commandBufferCount = 1; VkCommandBuffer commandBuffer; vkAllocateCommandBuffers(device_, &allocInfo, &commandBuffer); VkCommandBufferBeginInfo beginInfo{}; beginInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO; beginInfo.flags = VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT; vkBeginCommandBuffer(commandBuffer, &beginInfo); return commandBuffer; } void LveDevice::endSingleTimeCommands(VkCommandBuffer commandBuffer) { vkEndCommandBuffer(commandBuffer); VkSubmitInfo submitInfo{}; submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO; submitInfo.commandBufferCount = 1; submitInfo.pCommandBuffers = &commandBuffer; vkQueueSubmit(graphicsQueue_, 1, &submitInfo, VK_NULL_HANDLE); vkQueueWaitIdle(graphicsQueue_); vkFreeCommandBuffers(device_, commandPool, 1, &commandBuffer); } void LveDevice::copyBuffer(VkBuffer srcBuffer, VkBuffer dstBuffer, VkDeviceSize size) { VkCommandBuffer commandBuffer = beginSingleTimeCommands(); VkBufferCopy copyRegion{}; copyRegion.srcOffset = 0; // Optional copyRegion.dstOffset = 0; // Optional copyRegion.size = size; vkCmdCopyBuffer(commandBuffer, srcBuffer, dstBuffer, 1, ©Region); endSingleTimeCommands(commandBuffer); } void LveDevice::copyBufferToImage( VkBuffer buffer, VkImage image, uint32_t width, uint32_t height, uint32_t layerCount) { VkCommandBuffer commandBuffer = beginSingleTimeCommands(); VkBufferImageCopy region{}; region.bufferOffset = 0; region.bufferRowLength = 0; region.bufferImageHeight = 0; region.imageSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; region.imageSubresource.mipLevel = 0; region.imageSubresource.baseArrayLayer = 0; region.imageSubresource.layerCount = layerCount; region.imageOffset = {0, 0, 0}; region.imageExtent = {width, height, 1}; vkCmdCopyBufferToImage( commandBuffer, buffer, image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, ®ion); endSingleTimeCommands(commandBuffer); } bool hasStencilComponent(VkFormat format) { return format == VK_FORMAT_D32_SFLOAT_S8_UINT || format == VK_FORMAT_D24_UNORM_S8_UINT; } void LveDevice::transitionImageLayout( VkImage image, VkFormat format, VkImageLayout oldLayout, VkImageLayout newLayout, uint32_t mipLevels, uint32_t layerCount) { // uses an image memory barrier transition image layouts and transfer queue // family ownership when VK_SHARING_MODE_EXCLUSIVE is used. There is an // equivalent buffer memory barrier to do this for buffers VkCommandBuffer commandBuffer = beginSingleTimeCommands(); VkImageMemoryBarrier barrier{}; barrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER; barrier.oldLayout = oldLayout; barrier.newLayout = newLayout; barrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED; barrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED; barrier.image = image; barrier.subresourceRange.baseMipLevel = 0; barrier.subresourceRange.levelCount = mipLevels; barrier.subresourceRange.baseArrayLayer = 0; barrier.subresourceRange.layerCount = layerCount; if (newLayout == VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL) { barrier.subresourceRange.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT; if (hasStencilComponent(format)) { barrier.subresourceRange.aspectMask |= VK_IMAGE_ASPECT_STENCIL_BIT; } } else { barrier.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; } VkPipelineStageFlags sourceStage; VkPipelineStageFlags destinationStage; if (oldLayout == VK_IMAGE_LAYOUT_UNDEFINED && newLayout == VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL) { barrier.srcAccessMask = 0; barrier.dstAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT; sourceStage = VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT; destinationStage = VK_PIPELINE_STAGE_TRANSFER_BIT; } else if ( oldLayout == VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL && newLayout == VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL) { barrier.srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT; barrier.dstAccessMask = VK_ACCESS_SHADER_READ_BIT; sourceStage = VK_PIPELINE_STAGE_TRANSFER_BIT; destinationStage = VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT; } else if ( oldLayout == VK_IMAGE_LAYOUT_UNDEFINED && newLayout == VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL) { barrier.srcAccessMask = 0; barrier.dstAccessMask = VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT | VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT; sourceStage = VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT; destinationStage = VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT; } else { throw std::invalid_argument("unsupported layout transition!"); } vkCmdPipelineBarrier( commandBuffer, sourceStage, destinationStage, 0, 0, nullptr, 0, nullptr, 1, &barrier); endSingleTimeCommands(commandBuffer); } void LveDevice::createImage( uint32_t width, uint32_t height, uint32_t mipLevels, VkFormat format, VkImageTiling tiling, VkImageUsageFlags usage, VkMemoryPropertyFlags properties, VkImage &image, VkDeviceMemory &imageMemory, VkImageCreateFlags flags, uint32_t arrayLayers) { VkImageCreateInfo imageInfo{}; imageInfo.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO; imageInfo.imageType = VK_IMAGE_TYPE_2D; imageInfo.extent.width = width; imageInfo.extent.height = height; imageInfo.extent.depth = 1; imageInfo.mipLevels = mipLevels; imageInfo.arrayLayers = arrayLayers; imageInfo.format = format; imageInfo.tiling = tiling; imageInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED; imageInfo.usage = usage; imageInfo.samples = VK_SAMPLE_COUNT_1_BIT; imageInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE; imageInfo.flags = flags; if (vkCreateImage(device_, &imageInfo, nullptr, &image) != VK_SUCCESS) { throw std::runtime_error("failed to create image!"); } VkMemoryRequirements memRequirements; vkGetImageMemoryRequirements(device_, image, &memRequirements); VkMemoryAllocateInfo allocInfo{}; allocInfo.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO; allocInfo.allocationSize = memRequirements.size; allocInfo.memoryTypeIndex = findMemoryType(memRequirements.memoryTypeBits, properties); if (vkAllocateMemory(device_, &allocInfo, nullptr, &imageMemory) != VK_SUCCESS) { throw std::runtime_error("failed to allocate image memory!"); } vkBindImageMemory(device_, image, imageMemory, 0); } VkImageView LveDevice::createImageView( VkImage image, VkFormat format, VkImageAspectFlags aspectFlags, uint32_t mipLevels, VkImageViewType viewType) { VkImageViewCreateInfo viewInfo{}; viewInfo.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO; viewInfo.image = image; viewInfo.viewType = viewType; viewInfo.format = format; viewInfo.subresourceRange.aspectMask = aspectFlags; viewInfo.subresourceRange.baseMipLevel = 0; viewInfo.subresourceRange.levelCount = mipLevels; viewInfo.subresourceRange.baseArrayLayer = 0; viewInfo.subresourceRange.layerCount = viewType == VK_IMAGE_VIEW_TYPE_CUBE ? 6 : 1; VkImageView imageView; if (vkCreateImageView(device_, &viewInfo, nullptr, &imageView) != VK_SUCCESS) { throw std::runtime_error("failed to create texture image view!"); } return imageView; } void LveDevice::generateMipmaps( VkImage image, VkFormat imageFormat, int32_t texWidth, int32_t texHeight, uint32_t mipLevels) { VkCommandBuffer commandBuffer = beginSingleTimeCommands(); // Check if image format supports linear blitting VkFormatProperties formatProperties; vkGetPhysicalDeviceFormatProperties(physicalDevice, imageFormat, &formatProperties); if (!(formatProperties.optimalTilingFeatures & VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT)) { throw std::runtime_error("texture image format does not support linear blitting!"); } VkImageMemoryBarrier barrier{}; barrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER; barrier.image = image; barrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED; barrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED; barrier.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; barrier.subresourceRange.baseArrayLayer = 0; barrier.subresourceRange.layerCount = 1; barrier.subresourceRange.levelCount = 1; int32_t mipWidth = texWidth; int32_t mipHeight = texHeight; for (uint32_t i = 1; i < mipLevels; i++) { barrier.subresourceRange.baseMipLevel = i - 1; barrier.oldLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL; barrier.newLayout = VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL; barrier.srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT; barrier.dstAccessMask = VK_ACCESS_TRANSFER_READ_BIT; vkCmdPipelineBarrier( commandBuffer, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, 0, 0, nullptr, 0, nullptr, 1, &barrier); VkImageBlit blit{}; blit.srcOffsets[0] = {0, 0, 0}; blit.srcOffsets[1] = {mipWidth, mipHeight, 1}; blit.srcSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; blit.srcSubresource.mipLevel = i - 1; blit.srcSubresource.baseArrayLayer = 0; blit.srcSubresource.layerCount = 1; blit.dstOffsets[0] = {0, 0, 0}; blit.dstOffsets[1] = {mipWidth > 1 ? mipWidth / 2 : 1, mipHeight > 1 ? mipHeight / 2 : 1, 1}; blit.dstSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; blit.dstSubresource.mipLevel = i; blit.dstSubresource.baseArrayLayer = 0; blit.dstSubresource.layerCount = 1; vkCmdBlitImage( commandBuffer, image, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, &blit, VK_FILTER_LINEAR); barrier.oldLayout = VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL; barrier.newLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL; barrier.srcAccessMask = VK_ACCESS_TRANSFER_READ_BIT; barrier.dstAccessMask = VK_ACCESS_SHADER_READ_BIT; vkCmdPipelineBarrier( commandBuffer, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT, 0, 0, nullptr, 0, nullptr, 1, &barrier); if (mipWidth > 1) mipWidth /= 2; if (mipHeight > 1) mipHeight /= 2; } barrier.subresourceRange.baseMipLevel = mipLevels - 1; barrier.oldLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL; barrier.newLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL; barrier.srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT; barrier.dstAccessMask = VK_ACCESS_SHADER_READ_BIT; vkCmdPipelineBarrier( commandBuffer, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT, 0, 0, nullptr, 0, nullptr, 1, &barrier); endSingleTimeCommands(commandBuffer); } } // namespace lve